Fijn stof in de IJmond:
Samenstelling en gezondheidskundige relevantie
GGD Amsterdam
Afdeling Leefomgeving

Fijn stof in de IJmond: Samenstelling en gezondheidskundige relevantie

Auteurs
Drs. N.J. Nijhuis en dr. ir. R.T. van Strien

© GGD, Amsterdam, Nederland. Alle rechten voorbehouden.
GGD Amsterdam en/of de met haar geïntegreerde maatschappijen zijn niet aansprakelijk voor enige directe of indirecte, bijkomstige of gevolgschade ontstaan door of bij het gebruik van de informatie of gegevens uit dit document, of door de onmogelijkheid die informatie of gegevens te gebruiken. De inhoud van dit rapport mag aan derden niet anders dan als één geheel worden ontsloten, voorzien van bovengenoemde aanduidingen met betrekking tot auteursrechten en aansprakelijkheid.
Voorwoord

Door: de provincie Noord-Holland

Voor u ligt het rapport ‘Fijn stof in de IJmond: samenstelling en gezondheid’. Dit rapport is tot stand gekomen met steun van het Europese project Joaquin. Joaquin staat voor Joint Air Quality Initiative en is een Europees samenwerkingsverband tussen verschillende organisaties die zich bezig houden met luchtkwaliteit. Het project wordt financieel mogelijk gemaakt door subsidie uit het programma ‘INTERREG IVB North West Europe’ (www.nweurope.eu) dat onderdeel is van het Europees Fonds voor Regionale Ontwikkeling. Vanuit Nederland zijn de GGD Amsterdam, het RIVM, ECN en de provincie Noord-Holland betrokken als partner bij dit project.

Het project Joaquin is inmiddels ten einde. Gedurende een periode van 4 jaar hebben de partners zich in gezet om met elkaar kennis te ontwikkelen gericht op een meer gezondheidsrelevant luchtkwaliteitsbeleid in Europa. Om daartoe te komen zijn er als onderdeel van het project op vijf verschillende plekken in Europa niet alleen de genormeerde, maar ook de (potentieel) meer gezondheidsrelevante parameters gemeten zoals: ultrafijn stof (deeltjesaantallen en actief oppervlak), black carbon (roet) en de samenstelling van het verzamelde PM10. Doel was enerzijds om – internationaal geïjkt - ervaring op te doen met dergelijke metingen en anderszijds om meer inzicht te krijgen via analyses van de meetdata in de samenstelling van de deeltjes in de lucht op verschillende locaties.

In de provincie Noord-Holland zijn er ook metingen en analyses gedaan in de IJmond om meer inzicht te krijgen in de specifieke situatie van deze qua fijn stof zwaar belaste regio. Dit rapport is het resultaat. De uitkomsten van en ervaringen met deze metingen - vooral ook van moeilijk te meten parameters zoals ultrafijn stof en roet - worden uitgewisseld met andere partners met een meetnet.
<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voorwoord</td>
<td>Voorwoord</td>
</tr>
<tr>
<td>Inhoudsopgave</td>
<td>Inhoudsopgave</td>
</tr>
<tr>
<td>1</td>
<td>Samenvatting</td>
</tr>
<tr>
<td>2</td>
<td>Inleiding</td>
</tr>
<tr>
<td>3.1</td>
<td>Onderzoeksvragen 1</td>
</tr>
<tr>
<td>3.1</td>
<td>Onderzoeksvragen 2</td>
</tr>
<tr>
<td>3.1</td>
<td>Onderzoeksvragen 3</td>
</tr>
<tr>
<td>3.2</td>
<td>Gebruik van grenswaarden</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Wettelijke grenswaarden</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Gezondheidskundige grenswaarden</td>
</tr>
<tr>
<td>3.3</td>
<td>Mogelijke bronnen</td>
</tr>
<tr>
<td>4</td>
<td>Fijn stof</td>
</tr>
<tr>
<td>4.1</td>
<td>Inleiding</td>
</tr>
<tr>
<td>4.2</td>
<td>Concentratie en grenswaarde</td>
</tr>
<tr>
<td>4.3</td>
<td>Gezondheidskundige effecten</td>
</tr>
<tr>
<td>4.4</td>
<td>Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee</td>
</tr>
<tr>
<td>5</td>
<td>Roet</td>
</tr>
<tr>
<td>5.1</td>
<td>Inleiding</td>
</tr>
<tr>
<td>5.2</td>
<td>Concentratie en grenswaarde</td>
</tr>
<tr>
<td>5.3</td>
<td>Gezondheidskundige effecten</td>
</tr>
<tr>
<td>5.4</td>
<td>Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee</td>
</tr>
</tbody>
</table>
Fijn stof in de IJmond: Samenstelling en gezondheidskundige relevantie

5.5 Conclusie roet .. 24

6 Elementen (waaronder metalen) .. 25
6.1 Inleiding .. 25
6.2 Concentratie en grenswaarde .. 26
Concentraties .. 26
Grenswaarden ... 29
6.3 Gezondheidskundige effecten .. 30
6.3.1 Arseen ... 30
6.3.2 Cadmium ... 31
6.3.3 Chroom ... 31
6.3.4 IJzer ... 31
6.3.5 Lood .. 31
6.3.6 Mangaan .. 32
6.3.7 Nikkel ... 32
6.3.8 Selenium ... 32
6.3.9 Thallium ... 33
6.3.10 Vanadium .. 33
6.3.11 Zink .. 33
6.3.12 Gezondheidseffecten elementen samengevat ... 33
6.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee 35
6.4.1 Arseen .. 35
6.4.2 Cadmium ... 36
6.4.3 Chroom .. 36
6.4.4 IJzer ... 37
6.4.5 Lood .. 38
6.4.6 Mangaan .. 38
6.4.7 Nikkel ... 39
6.4.8 Vanadium ... 40
6.4.9 Selenium, thallium, titanium en zink ... 40
6.4.10 Concentraties elementen samengevat .. 40
6.5 Conclusie elementen .. 42

7 Polycyclische Aromatische Koolwaterstoffen ... 43
7.1 Inleiding .. 43
7.2 Concentratie en Grenswaarde .. 44
7.3 Gezondheidskundige effecten .. 45
7.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee 45
7.5 Conclusie ... 45

8 Wateroplosbare zouten .. 46
8.1 Inleiding .. 46
Fijn stof in de IJmond: Samenstelling en gezondheidskundige relevantie

8.2 Concentratie en grenswaarde .. 47
8.3 Gezondheidskundige effecten .. 48
8.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee 49

8.4.1 Chloride ... 49
8.4.2 Sulfuaat .. 49
8.4.3 Natrium-ion .. 50
8.4.4 Kalium-ion .. 51
8.4.5 Magnesium ... 51
8.4.6 Calcium .. 52

8.5 Conclusie wateroplosbare zouten in PM10 .. 52

9 Oxidatief potentieel .. 53

9.1 Inleiding ... 53
9.2 Concentratie en grenswaarde .. 53
9.3 Gezondheidskundige effecten .. 53
9.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee 53
9.5 Conclusie oxidatief potentieel .. 54

10 Markers voor houtrook ... 55

10.1 Inleiding .. 55
10.2 Concentratie en grenswaarde .. 55
10.3 Gezondheidskundige effecten .. 55
10.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee 55
10.5 Conclusie markers voor houtrook .. 56

11 Conclusie ... 57

12 Literatuur ... 59

Bijlage 1 Classificaties Kankerverwekkende stoffen .. 61
Samenvatting

De aanleiding voor dit onderzoek is de vraag of het fijn stof in de IJmond vergelijkbaar is met fijn stof op andere plaatsen, bijvoorbeeld op plekken met veel verkeer. De fijn stof concentraties in Wijk aan Zee blijven beneden de wettelijke grenswaarde, maar de gezondheidskundige grenswaarde wordt overschreden. Overigens is dit in een groot deel van Nederland het geval. Fijn stof kan ook onder de gezondheidskundige grenswaarden nog gezondheidseffecten teweegbrengen. Verlaging van de concentratie PM10 zal altijd gezondheidswinst opleveren.

Metingen laten zien dat er ongeveer 4,5 µg/m\(^3\) PM10 (20 %) meer in de lucht aanwezig is in Wijk aan Zee dan op achtergrondstation Vondelpark. Uit de windrichtinganalyse blijkt dat het industriegebied IJmond hieraan een belangrijke bijdrage levert. Uit de wetenschappelijke kennis die er bestaat over het effect van PM10 op sterfte kan afgeleid worden dat een verhoging van 4,5 µg/m\(^3\) PM10 samenhangt met een verkorting van het leven van ongeveer twee maanden. Overigens zijn in 2013 op meetstations bij drukke wegen in Amsterdam vergelijkbare concentraties PM10 gemeten als in Wijk aan Zee. Het is de verwachting dat bij mensen die meer PM10 inademen vaker hart-en vaatziekten en longziekten voorkomen.

Het is niet precies bekend welke specifieke bestanddelen van PM10 verantwoordelijk zijn voor gezondheidseffecten. Gegevens van het meetprogramma IJmond tussen 2011 en 2013 zijn gebruikt om te beoordelen hoe hoog de concentratie is van verschillende bestanddelen van PM10 (elementen en PAK’s) in Wijk aan Zee is, en of er een duidelijke bijdrage is van het industriegebied IJmond aan die concentratie. Met aanvullende meetgegevens uit het JOAQUIN project is voor roet, elementen, wateroplosbare zouten, markers voor houtrook en oxidatief potentieel het verschil tussen Wijk aan Zee en stadsachtergrondstation Vondelpark beschreven.

In Wijk aan Zee was de concentratie roet 0,16 µg/m\(^3\) (bijna 30%) hoger dan op stadsachtergrondlokatie Vondelpark. Ook hieraan levert industriegebied IJmond een belangrijke bijdrage. Mensen die in de stad aan een drukke weg wonen leven ten gevolge van roet gemiddeld ongeveer zes maanden korter dan mensen die niet aan een drukke weg wonen. Het is de verwachting dat bij mensen die meer roet inademen vaker hart-en vaatziekten en longziekten voorkomen. In de stad is het meeste roet afkomstig van wegverkeer. Uit de wetenschappelijke kennis die er bestaat over het effect van verkeersgerelateerde roet op sterfte, zou geconcludeerd kunnen worden dat een verhoging van 0,16 µg/m\(^3\) roet samenhangt met een verkorting van het leven van ongeveer één maand. Het is onduidelijk of het roet in de IJmond vergelijkbaar is met verkeersgerelateerd roet, omdat het voor een belangrijk deel afkomstig is van een andere bron.

Het verschil tussen de PM10 concentraties in Wijk aan Zee en Vondelpark wordt voor een belangrijk deel bepaald door de hoeveelheid wateroplosbare zouten in het stof, de belangrijkste bron van deze zouten in Wijk aan Zee is de zee. Het is niet waarschijnlijk dat de wateroplosbare zouten uit zee aanleiding zullen geven tot gezondheidseffecten.

Naast zouten, is ijzer verantwoordelijk voor een deel van de verhoogde PM10 concentratie in Wijk aan Zee. Bij een vergelijking met het Vondelpark wordt gemiddeld ongeveer 0,5 µg/m\(^3\) ijzer meer gevonden in het PM10 uit Wijk aan Zee. Er is een duidelijke bijdrage van de op het industriegebied IJmond aanwezige staalindustrie aan de ijzerconcentratie in de lucht in Wijk aan Zee.
Alle bestanddelen van PM10 die in dit rapport beschreven worden zijn zowel te vinden in het Vondelpark als in Wijk aan Zee. Voor geen van de aparte bestanddelen van fijn stof zijn grenswaarden overschreden. De concentratie van cadmium, ijzer, lood en mangaan is in Wijk aan Zee ongeveer drie keer zo hoog als in het Vondelpark (dat is ongeveer 200% meer). Van cadmium en mangaan worden bij de gemeten concentraties in Wijk aan Zee geen gezondheidseffecten verwacht. Voor de gezondheid van inwoners van Wijk aan Zee zijn roet en mogelijk ijzer, lood en chroom relevant.

IJzer is een zogenaamd transitiemetaal en er zijn aanwijzingen dat transitiemetalen luchtwegklachten kunnen veroorzaken. De concentratie van transitiemetalen in de lucht zou kunnen bijdragen aan de schadelijkheid van fijn stof. Er is geen norm voor ijzer waaraan getoetst kan worden. Het reduceren van de hoeveelheid ijzer in de lucht kan mogelijk zorgen voor vermindering van luchtwegklachten.

Hoewel er geen grenswaarden worden overschreden, kunnen er ten gevolge van lood in de lucht gezondheidseffecten optreden. Neerslag van lood uit de lucht op de bodem kan zorgen voor een verhoogde inname door kinderen, omdat zij tijdens het spelen bodemdeeltjes via hand-mond contact kunnen binnenkrijgen. Bij kinderen kan lood een negatief effect op het leervormen hebben en bij volwassenen zijn effecten op hart en vaten beschreven. Als een reductie van lood in de lucht samenhangt met een afname van lood in bloed bij kinderen zal iedere vermindering van lood in de lucht, net als bij fijn stof, gezondheidswinst opleveren.

Het is onbekend welk aandeel chroom-6 heeft in de concentratie totaal chroom die gemeten is. Er zijn namelijk ook minder gevaarlijke vormen van chroom in de lucht aanwezig, maar hierop is door de meetmethode geen onderscheid gemaakt. Wanneer alle chroom in de vorm van chroom-6 aanwezig zou zijn, dan wordt het maximaal toelaatbaar risico (MTR) voor chroom-6 met ongeveer een factor 2,5 overschreden. Omdat de verschillende vormen van chroom niet afzonderlijk zijn bepaald, is niet uit te sluiten dat de grenswaarde wordt overschreden, maar kan dit ook niet worden bevestigd. Het verdient aanbeveling om meer inzicht te krijgen in de chroom-6 concentratie, bijvoorbeeld aan de hand van emissiegegevens of nadere analyses van PM10 op de verschillende vormen van chroom in de IJmond.

Daar waar voor kankerverwekkende stoffen een grens voor toelaatbaar risico beschikbaar is, liggen de concentraties van de kankerverwekkende stoffen (PAK’s, arseen en nikkel) in PM10 onder het maximaal toelaatbaar risico (MTR). Dat wil zeggen dat de kans op kanker ten gevolge van inademing van deze individuele componenten kleiner is dan 1 op 10.000 bij levenslange blootstelling. Voor kankerverwekkende stoffen kan desondanks altijd gezondheidswinst worden behaald door reductie van de uitstoot.

In dit rapport is ingegaan op de mogelijke gezondheidsrisico’s ten gevolge van inademing van verschillende componenten. Bij gebrek aan kennis over gecombineerde effecten zijn alleen gezondheidseffecten van individuele componenten geevalueerd. Daarnaast zijn de risico’s ten gevolge van neerslag van metalen en PAK’s op de bodem zijn niet meegenomen in de risicobeoordeling. Het is niet uitgesloten dat deze blootstellingsroute consequenties voor de gezondheid kan hebben.
2 Inleiding

Er zijn veel vragen over de effecten van luchtverontreiniging op de gezondheid van mensen door de aanwezigheid van zware industrie in de IJmond en de luchtverontreiniging die mede daardoor ontstaat. Het is onbekend of het fijn stof in de IJmond vergelijkbaar is met fijn stof op andere plaatsen. De fijn stof-concentraties blijven beneden de door de EU vastgestelde grenswaarden, maar het is lastig om een vergelijking te maken met andere hoogbelaste plaatsen in Nederland vanwege de aanwezigheid van staalindustrie en de zeesluizen in industriegebied IJmond. Op de meeste hoogbelaste plaatsen in Nederland is er vooral uitstoot van luchtverontreiniging door wegverkeer. Daarvan is intussen bekend dat het tot aanzienlijke gezondheidsschade kan leiden. Het is niet duidelijk welke bestanddelen van fijn stof exact gezondheidsschade kunnen veroorzaken, daarnaast is de specifieke samenstelling van de uitstoot van het industriegebied IJmond niet tot in detail bekend. Gemeenten en bewoners van de IJmond, Omgevingsdiensten en de provincie Noord-Holland vragen zich af of fijn stof in de IJmond andere gevolgen voor de gezondheid kan hebben dan fijn stof elders.

Fijn stof versus grof stof
Bij het beschouwen van het stof dat in de lucht terecht komt is het belangrijk om duidelijk voor ogen te hebben dat fijn stof anders is dan grof stof. Fijn stof zweeft in de lucht en de deeltjes ervan zijn kleiner dan 10 µm (= 1/100 millimeter) in doorsnede. Dat betekent dat fijn stof nauwelijks op de grond of op oppervlakken terecht komt. Grof stof daarentegen blijft slechts korte tijd in de lucht aanwezig, en slaat door het formaat en gewicht van de deeltjes voor het grootste deel in de omgeving van de bron neer. Het hier beschreven onderzoek beperkt zich tot fijn stof, aangezien eventuele gezondheidsrisico's hoogstwaarschijnlijk daarmee samenhangen. Het effect van grof stof op de gezondheid is kleiner dan het effect van fijn stof, omdat grof stof slechts heel beperkt diep wordt ingeademd.

Samenstelling fijn stof
Fijn stof kan verdeeld worden in verschillende groottefracties, zoals PM2.5 (alle fijn stof kleiner dan 2,5 µm) en PM10 (alle fijn stof kleiner dan 10 µm). PM2.5 is altijd een deel van PM10. PM10 bevat allerlei verschillende bestanddelen, zoals metalen, roet, opwaaiend bodemstof, zouten die ontstaan door chemische reacties in de atmosfeer, materiaal dat in de lucht komt bij slijtage van allerlei zaken, en zouten uit de zee. Het voor de PM10 metingen verzamelde stof is geanalyseerd op verschillende bestanddelen zoals roet, metalen, PAK's, zouten en verschillende andere specifieke stoffen. Deze bestanddelen zijn in meer of mindere mate relevant voor de gezondheid.
Fijn stof in de IJmond: Samenstelling en gezondheidskundige relevantie

Inschatting van gezondheidseffecten
Het is onbekend welke specifieke bestanddelen van PM10 verantwoordelijk zijn voor gezondheidseffecten. In de bestaande rapportages wordt vaak getoetst aan wettelijke grenswaarden. Deze zijn maar voor een beperkt aantal stoffen opgesteld. Voor veel meer stoffen zijn gezondheidskundige grenswaarden vastgesteld.

Effecten van stoffen hangen af van de mate waarin een stof wordt ingeademd. Van belang is hoe lang stoffen worden ingeademd en hoe hoog de concentratie is. In het voor u liggende rapport zijn zowel wettelijke als gezondheidskundige grenswaarden opgenomen voor alle gemeten bestanddelen van PM10. Mogelijke gezondheidseffecten zijn ingeschat aan de hand van gezondheidskundige grenswaarden voor de lange termijn.

Onderzoeksvragen
In het voor u liggende rapport is getracht op drie vragen een antwoord te geven.

Vraag 1: Wat is de jaargemiddelde concentratie van de verschillende bestanddelen van PM10 op het meetstation Wijk aan Zee en wat is de bijdrage van het industriegebied IJmond daaraan?

Paragraaf twee en paragraaf vier van de hoofdstukken vier tot en met tien geven hierop een antwoord.

Vraag 2: Is de samenstelling van fijn stof op het meetstation Wijk aan Zee anders dan de samenstelling op het meetstation in het Amsterdamse Vondelpark (een stadsachtergrondlocatie)?

Jazeker. Er zitten in het PM10 van Wijk aan Zee duidelijk meer wateroplosbare zouten en ijzer. Ook de concentraties van de elementen arseen, cadmium, lood, mangaan en vanadium zijn significante hoogte in Wijk aan Zee dan op achtergrondstation Vondelpark. Polycyclische aromatische koolwaterstoffen (PAK’s) konden niet worden vergeleken met een achtergrondstation, omdat PM10 uit het Vondelpark niet is geanalyseerd op PAK’s.

Vraag 3: Is de concentratie van de verschillende bestanddelen van PM10 in Wijk aan Zee zo afwijkend van luchtverontreiniging op een stadsachtergrondlocatie, dat daarvan additionele gezondheidseffecten te verwachten zijn?

Het is bekend dat inademing van PM10 gezondheidseffecten veroorzaakt. Echter, als componenten van PM10 individueel getoetst worden aan grenswaarden dan voldoen alle componenten van het PM10 aan de grenswaarden. Alleen voor chroom kan niet met zekerheid worden aangegeven of aan de norm wordt voldaan, hiervoor zijn aparte metingen op chroom-6 nodig.

In Wijk aan Zee was de concentratie roet bijna 30% hoger dan op stadsachtergrondlokatie Vondelpark. Het is de verwachting dat mensen die meer roet inademen korte leven en dat bij hen vaker hart-en vaatziekten en longziekten

1 Waar in dit rapport wordt gesproken over een significant verschil wordt bedoeld een statistisch significant verschil
voorkomen. Het is onduidelijk of het roet in de IJmond vanuit gezondheidskundig perspectief vergelijkbaar is met verkeersgerelateerd roet, omdat het voor een belangrijk deel afkomstig is van een andere bron.

Over combinatie-effecten van de verschillende componenten tezamen is weinig bekend. Wel moet worden opgemerkt dat er onderzoek wordt gedaan naar de effecten van transitiemetalen op gezondheid. Onder transitiemetalen vallen onder andere ijzer, vanadium, nikkel, chroom, koper en zink. Het is mogelijk dat effecten van deze transitiemetalen luchtwegklachten kunnen veroorzaken.

Leeswijzer

Het rapport is alsvolgt opgebouwd. Hoofdstuk vier beschrijft PM10. Hoofdstuk vijf tot en met acht en tien beschrijven de verschillende bestanddelen van PM10; roet, elementen, PAK’s, wateroplosbare zouten en markers voor houtrook. Hoofdstuk negen richt zich op oxidatief potentieel.

Elk hoofdstuk hanteert de dezelfde indeling. Na een inleiding laat de tweede paragraaf de concentratie zien van de gemeten component in de lucht. Ook wordt hierin de grenswaarde aangegeven als deze beschikbaar is. De derde paragraaf gaat in op gezondheidskundige effecten. De vierde paragraaf vergelijkt de meetresultaten met stadsachtergrondstation Vondelpark en laat de invloed van de windrichting op concentraties in Wijk aan Zee zien. De laatste paragraaf bevat de conclusie per bestanddeel.
3 Methoden

In het hier beschreven onderzoek wordt in eerste instantie de fractie PM10 beschreven, zoals gemeten in het meetprogramma IJmond op het meetstation Wijk aan Zee (nummer 553 in figuur 3.1). Vervolgens wordt voor een reeks verschillende bestanddelen van het PM10 beschreven wat de concentratie in de lucht in Wijk aan Zee is, of het industriegebied IJmond een belangrijke bijdrage levert aan die concentratie, en of de concentratie op het meetstation Wijk aan Zee afwijkt van de concentratie op een stadsachtergrondlocatie, in dit geval het meetstation in het Amsterdamse Vondelpark. Hiertoe is gebruik gemaakt van aanvullende metingen die zijn uitgevoerd in het kader van het JOAQUIN project (www.joaquin.eu). In dit project zijn extra PM10 metingen uitgevoerd iedere zesde dag van april 2013 tot mei 2014. Dit PM10 is vervolgens geanalyseerd op verschillende bestanddelen zoals metalen, zouten, roet en producten die vrijkomen bij het verbranden van hout. Deze aanvullende metingen zijn gedaan op het meetstation Wijk aan Zee (nummer 553 in figuur 3.1) en op een stadsachtergrond meetstation in het Amsterdamse Vondelpark. Daardoor is het mogelijk om voor deze bestanddelen een vergelijking te maken tussen de luchtverontreiniging op een stadsachtergrondlocatie en in de IJmond.

Onderstaande tabel geeft aan welk type metingen voor de verschillende componenten in de twee meetprogramma’s beschikbaar zijn. Een jaargemiddelde betekent dat er elke dag metingen zijn gedaan gedurende het jaar. Een indicatief jaargemiddelde betekent dat er niet elke dag metingen beschikbaar zijn. Soms is er geselecteerd op windrichting, om de bijdrage van het industriegebied IJmond vast te stellen.

<table>
<thead>
<tr>
<th>Componenten</th>
<th>Meetprogramma IJmond 2013</th>
<th>Meetprogramma JOAQUIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Jaargemiddelde</td>
<td>Indicatief jaargemiddelde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(niet geselecteerd op windrichting)</td>
</tr>
<tr>
<td>Roet</td>
<td>-</td>
<td>Indicatief jaargemiddelde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(niet geselecteerd op windrichting)</td>
</tr>
<tr>
<td>Elementen</td>
<td>Indicatief jaargemiddelde</td>
<td>Indicatief jaargemiddelde</td>
</tr>
<tr>
<td></td>
<td>(geselecteerd op windrichting)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(niet geselecteerd op windrichting)</td>
</tr>
<tr>
<td>PAK’s</td>
<td>Indicatief jaargemiddelde</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(niet geselecteerd op windrichting)</td>
<td></td>
</tr>
<tr>
<td>Wateroplosbare zouten</td>
<td>-</td>
<td>Indicatief jaargemiddelde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(niet geselecteerd op windrichting)</td>
</tr>
<tr>
<td>Oxidatief potentieel</td>
<td>-</td>
<td>Indicatief jaargemiddelde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(niet geselecteerd op windrichting)</td>
</tr>
<tr>
<td>Markers voor houtrook</td>
<td>-</td>
<td>Indicatief jaargemiddelde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(niet geselecteerd op windrichting)</td>
</tr>
</tbody>
</table>

In het voor u liggende rapport is daarnaast gebruik gemaakt van analyses van PM10 die zijn uitgevoerd in het kader van het meetprogramma IJmond van 2011-2013. Daarbij gaat het om PAK’s en een reeks elementen, waaronder metalen. Voor alle bestanddelen van PM10 die gemeten zijn in het meetprogramma IJmond is een indicatief jaargemiddelde weergegeven. In het GGD rapport ‘Evaluatie metingen 2011-2013 PM10, PM2,5, PAK en zware metalen in de IJmond’ uit januari 2015 is beschreven hoe deze indicatieve gemiddelden en de bijdrage vanuit industriegebied IJmond daaraan tot stand zijn gekomen. In de gezondheidskundige interpretatie van bestanddelen waarvan geen jaargemiddelde beschikbaar is, wordt in dit rapport het indicatief jaargemiddelde gebruikt. Wanneer het indicatieve jaargemiddelde geschat is op basis van windrichting selectie (dat geldt alleen voor elementen in het meetprogramma IJmond) zou er sprake kunnen zijn van een onderschatting van het werkelijke jaargemiddelde (zie bovengenoemde GGD rapport). Dat zou kunnen betekenen dat voor elementen (waaronder metalen) in het meetprogramma IJmond, er sprake is van een onderschatting van ongeveer 30%.
Fijn stof in de IJmond: Samenstelling en gezondheidskundige relevantie

Figuur 3.1 Meetlocaties in de IJmond

De meetresultaten beschreven in GGD rapport 14-1138 zijn gebruikt om per stof een inschatting te maken van de bijdrage die het industriegebied IJmond levert aan de concentratie. In Wijk aan Zee is door gebruik te maken van gegevens van de meetstations 551, 553, 572 en 573 onderzocht wat de specifieke bijdrage is wanneer de wind over het industriegebied IJmond waait. De bijdrage is bepaald door de gemiddelde concentratie uit de belaste windrichting te verminderen met de concentratie gemeten op dezelfde dag op het dan onbelaste tegenoverliggende meetstation. De verhouding tussen de bijdrage vanuit de richting van het industriegebied IJmond en het indicatieve jaargemiddelde is gebruikt om een inschatting te maken van de relatieve bijdrage van industriegebied IJmond aan de concentratie in Wijk aan Zee.

Voor een aantal stoffen, zoals wateroplosbare zouten (bijvoorbeeld zeezout), roet en markers van houtrook zijn alleen metingen gedaan in het kader van het JOAQUIN project. In het rapport ‘Joaquin - Joint Air Quality Initiative INTERIM REPORT, WP1 Methods, June 2015’ (www.joaquin.eu) is de exacte uitvoering van deze metingen beschreven. Voor het JOAQUIN onderzoek zijn op 67 dagen PM10 metingen gedaan op het meetstation Wijk aan Zee en op het meetstation Vondelpark te Amsterdam. Deze metingen zijn voor beide meetstations op dezelfde dag gedaan, namelijk iedere 6e dag vanaf 1 april 2013 tot en met 26 mei 2014. Het PM10 dat bij deze metingen werd verzameld is vervolgens geanalyseerd op EC (elementair koolstof), elementen (waaronder zware metalen), wateroplosbare zouten, markers voor houtrook en oxidatief potentieel. Dat maakt het mogelijk om voor de stoffen die gemeten zijn in het JOAQUIN project meer te zeggen over de samenstelling van het fijn stof in de IJmond en de mogelijke gezondheidseffecten daarvan in vergelijking met het fijn stof op een stadsachtergrondlokatie (waar geen specifieke industriële bron aanwezig is) dan voor de stoffen die niet in JOAQUIN zijn gemeten (namelijk PAK’s en een aantal elementen).

Daar waar grenswaarden voor de gemeten componenten beschikbaar zijn, is een toetsing gedaan.
3.1 Onderzoeksvragen

Onderzoeksvraag 1
Voor de beantwoording van de vraag wat de concentratie is op meetstation Wijk aan Zee en wat daarvan de bijdrage is van het industriegebied IJmond, is gebruik gemaakt van zowel de gegevens uit het eerder genoemde meetprogramma IJmond van 2011 tot 2013 als meetresultaten uit het JOAQUIN project.

In de evaluatie van meetprogramma IJmond is onder andere een schatting gemaakt van de bijdrage van het industriegebied IJmond aan de concentratie van de verschillende bestanddelen van PM$_{10}$ op het meetpunt Wijk aan Zee.

In deze rapportage is voor alle binnen JOAQUIN gemeten bestanddelen van PM$_{10}$ (dus alle behalve PAK's), ook weergegeven wat de concentratie is bij verschillende windrichtingen. Daartoe zijn alle dagen waarop in het JOAQUIN project metingen in Wijk aan Zee zijn gedaan, ingedeeld in acht verschillende windrichtingen. Per windrichting wordt de gemiddelde concentratie van een component weergegeven in een windroos. Op deze manier wordt inzichtelijk gemaakt bij welke windrichting de hoogste concentratie van een component wordt gemeten in Wijk aan Zee. Dit is behulpzaam bij het lokaliseren van bronnen. In tabel 3.1 is beschreven op hoeveel dagen de wind uit welke richting kwam. In deze tabel is te zien dat elke windrichting meer dan vier dagen voorkwam, met uitzondering van de windrichting Zuidoost.

<table>
<thead>
<tr>
<th>Windrichting</th>
<th>Aantal dagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noord</td>
<td>7</td>
</tr>
<tr>
<td>Noordoost</td>
<td>11</td>
</tr>
<tr>
<td>Oost</td>
<td>6</td>
</tr>
<tr>
<td>Zuidoost</td>
<td>1</td>
</tr>
<tr>
<td>Zuid</td>
<td>11</td>
</tr>
<tr>
<td>Zuidwest</td>
<td>19</td>
</tr>
<tr>
<td>West</td>
<td>8</td>
</tr>
<tr>
<td>Noordwest</td>
<td>4</td>
</tr>
</tbody>
</table>

Onderzoeksvraag 2
Voor de beantwoording van de vraag wat het verschil in samenstelling van PM$_{10}$ op meetstation Wijk aan Zee en meetstation Vondelpark is, worden alleen gegevens gebruikt die in het JOAQUIN project zijn verzameld. Deze gegevens kunnen direct met elkaar worden vergeleken, omdat ze in de zelfde tijdsperiode op exact dezelfde dagen zijn gemeten.

Omdat sommige elementen en PAK's niet bepaald zijn in het JOAQUIN project is beantwoording van deze onderzoeksvraag voor sommige bestanddelen niet mogelijk.

Onderzoeksvraag 3
Voor de beantwoording van de onderzoeksvraag naar de gezondheidseffecten van de verschillende bestanddelen wordt voor de componenten van het PM$_{10}$ in Wijk aan Zee die significant hoger zijn dan op achtergrondlocatie Vondelpark in Amsterdam bekeken of er een gezondheidskundige grenswaarde wordt overschreden.
3.2 Gebruik van grenswaarden
Grenswaarden voor luchtkwaliteit zijn in deze rapportage onderverdeeld in twee typen, beiden bedoeld voor de leefomgeving (immissie):

1. Wettelijke grenswaarden
Wettelijke grenswaarden zijn vastgesteld op Europees niveau en zijn in Nederland opgenomen in de Wet Milieubeheer. Deze normen zijn onderverdeeld in grenswaarden en richt- of streefwaarden. Een grenswaarde moet binnen een bepaalde termijn worden bereikt en mag niet meer worden overschreden (resultaatverplichting). Een richt- of streefwaarde is een concentratie in de lucht die zoveel mogelijk binnen een bepaalde periode dient te worden bereikt.

2. Gezondheidskundige grenswaarden
Dit betreft niet-wettelijke grenswaarden, in Nederland wordt hiervoor de Toegestane Concentratie Lucht (TCL) gebruikt. In de Verenigde Staten is de Minimal Risk Level (MRL) ontwikkeld. De TCL van het Nederlandse RIVM is een grenswaarde voor lange termijn blootstelling (één jaar en langer). Daarnaast is de Minimal Risk Levels (MRL) van het Amerikaanse ATSDR (Agency for Toxic Disease Registry) in dit rapport opgenomen. Hiervan is de MRL\textsubscript{chronic} voor inhalatoire blootstelling gebruikt, omdat deze bruikbaar is in situaties waar sprake is van langdurige inademing. De MRL\textsubscript{chronic} is de jaargemiddelde concentratie waarvan wordt verwacht dat daaronder geen gezondheidseffecten plaatsvinden. Kankerverwekkende effecten zijn bij de MRL niet in beschouwing genomen.

De toegestane concentratie lucht is in Nederland gedefinieerd als het maximaal toelaatbare risiconiveau (MTR). Het MTR is de bovengrens voor een stof, die op basis van wetenschappelijke gegevens aangeeft bij welke concentratie geen gezondheidseffecten te verwachten zijn bij levenslange blootstelling. In het geval van kankerverwekkende stoffen is het MTR gedefinieerd als het blootstellingsniveau dat hoort bij het risico op één extra geval van kanker per 10.000 mensen gedurende een heel leven.

3.3 Mogelijke bronnen
Van alle bestanddelen wordt in paragraaf 1 van het betreffende hoofdstuk ingegaan op mogelijke bronnen. Voor metalen is onderscheid gemaakt in vijf verschillende typen bronnen (zie 6.1). In alle hoofdstukken wordt aan de hand van bronnen ingegaan op een mogelijke verklaring voor een hogere concentratie van een specifieke component bij een bepaalde windrichting.
Fijn stof

4 Inleiding

Fijn stof is een verzamelaar voor in de lucht zwevende deeltjes, die sterk kunnen verschillen in grootte, samenstelling en oorsprong. Meestal wordt fijn stof gekarakteriseerd als PM10: stofdeeltjes met een diameter kleiner dan 10 µm die bij inademing in de luchtwegen en longen terecht kunnen komen. PM10 bestaat uit deeltjes, die allerlei bestanddelen kunnen bevatten, zoals wateroplosbare zouten (sulfaat, nitraat, ammonium, zeezout), metalen, roet en nog veel meer zaken. Als typische bronnen van PM10 worden onder andere wegverkeer, scheepvaartverkeer, stalenbedrijven, cokesproductie, opslag en behandeling of verplaatsing van ruwe steenkolen genoemd. Er zijn ook natuurlijke bronnen van fijn stof, zoals bodemstof en zeezout.

De verschillen in de totale fijn stof concentratie zijn in Nederland ruimtelijk gezien vrij klein. Er wordt weleens gezegd dat het fijn stof als een deken over het hele land (of zelfs heel Europa) ligt. Dat komt doordat de belangrijkste bestanddelen van fijn stof in de atmosfeer ontstaan uit gassen (zoals NO₂, SO₂ en NH₃). De zouten die dan ontstaan blijven heel lang in de lucht als fijn stof, en worden over grote afstanden getransporteerd in de atmosfeer. Daardoor is een belangrijk deel van het fijn stof niet van lokale oorsprong, en dus ook moeilijk lokaal te beïnvloeden. Bepaalde andere bestanddelen, zoals roet en zeezout, zijn ook een deel van fijn stof. Deze bestanddelen hebben vaak wel een lokale oorsprong.

Er is al jaren bekend dat de concentraties PM10 in Wijk aan Zee in vergelijking met achtergrondstations hoog zijn. Deze kennis in combinatie met de aanwezigheid van industriegebied IJmond leiden tot de volgende vervolgvragen:

- Wat is de jaargemiddelde concentratie van de verschillende bestanddelen van PM10 op het meetstation Wijk aan Zee en wat is de bijdrage van het industriegebied IJmond daaraan?
- Is de samenstelling van fijn stof op het meetstation Wijk aan Zee anders dan de samenstelling op het meetstation in het Amsterdamse Vondelpark (een stadsachtergrondlocatie)?
- Is de concentratie van de verschillende bestanddelen van PM10 in Wijk aan Zee zo afwijkend van luchterontreiniging op een stadsachtergrondlocatie, dat daarvan additionele gezondheidseffecten te verwachten zijn?

De vraag is of er specifieke bestanddelen van PM10 te noemen zijn waarvoor duidelijke aanwijzingen bestaan dat er een belangrijke bijdrage vanuit de richting van het industriegebied IJmond en waarvan de concentraties op een niet door industrie belaste locatie (Vondelpark) lager is. In de volgende hoofdstukken wordt dat voor een aantal bestanddelen van PM10 onderzocht. Daarbij ligt de focus vooral op roet, metalen, polycyclische aromatische koolwaterstoffen (PAK’s) en wateroplosbare zouten.
4.2 Concentratie en grenswaarde

De jaargemiddelde concentratie gemeten in Wijk aan Zee in 2013 was 25,5 µg/m³ en in het Vondelpark 21,0 µg/m³ op basis van uurgemiddelde metingen. Hier is geen zeezoutcorrectie toegepast. Dat is allebei onder de wettelijke grenswaarde. Figuur 4.1 laat zien dat de PM10 concentratie in Wijk aan Zee significant hoger is dan de PM10 concentratie in het Vondelpark.

De wettelijke grenswaarde gesteld binnen de EU voor PM10 is een jaargemiddelde van maximaal 40 µg/m³. Daarnaast is de eis opgenomen dat maximaal 35 dagen per kalenderjaar de daggemiddelde (24 uur) concentratie hoger mag zijn dan 50 µg/m³. Het gemiddelde op basis van metingen van het meetprogramma IJmond op station Wijk aan Zee in 2013 bedroeg 25,5 µg/m³. Op 15 dagen in 2013 was het daggemiddelde hoger dan 50 µg/m³ (zie GGD Amsterdam rapport 14-1138), zonder rekening te houden zeezoutafteken. In deze periode wordt dus aan de wettelijke grenswaarden voldaan.

De Wereldgezondheidsorganisatie (WHO) heeft een jaargemiddelde gezondheidskundige grenswaarde vastgesteld van 20 µg/m³ voor PM10. In 2013 is deze gezondheidskundige grenswaarde overschreden. In tabel 4.1. worden wettelijke en gezondheidskundige grenswaarden voor PM10 weergegeven.

![Figuur 4.1 Jaargemiddelde PM10 concentratie (zwarte balk: 95% betrouwbaarheidsinterval) op meetpunten Wijk aan Zee en Vondelpark in 2013.](image)

<table>
<thead>
<tr>
<th>Tabel 4.1 Wettelijke grenswaarden voor PM10 in µg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grenswaarden</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PM10</td>
</tr>
</tbody>
</table>

4.3 Gezondheidskundige effecten

Kortdurende hoge blootstelling
Onder kortdurende hoge blootstelling verstaan we het optreden van episodes vanaf een paar dagen, waarbij de concentratie fijn stof hoger is dan normaal. Het gaat daarbij om pieken in de tijd. Inademing van PM\textsubscript{10} en PM\textsubscript{2.5} kan bij kortdurende blootstelling aan hoge concentraties luchtwegklachten teweegbrengen. Daarnaast is uit onderzoek gebleken dat op dagen met een hoge concentratie fijn stof meer mensen sterven dan op dagen met een lage concentratie fijn stof. Dit betreft met name mensen met hart- en vaatziekten, longaandoeningen en ouderen.

Langdurig verblijf op plaatsen met hoge blootstelling
Mensen die langdurig verblijven (vooral wonen) op een plek met een hoge fijn stofconcentratie leven gemiddeld korter. Het verschil ontstaat voor een belangrijk deel doordat mensen eerder sterven aan luchtwegaandoeningen en/of hart- en vaatziekten. Verder is bekend dat er een relatie is tussen langdurige blootstelling aan fijn stof en (verergering van) luchtwegklachten, hart- en vaat ziekten, longziekten en longkanker. Zelfs beneden de wettelijke en gezondheidskundige grenswaarden voor fijn stof kunnen gezondheidseffecten optreden. Dit betekent dat elke microgram fijn stof minder, gezondheidswinst oplevert.

4.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee

De concentratie PM\textsubscript{10} op meetstation Wijk aan Zee was in 2013 significant hoger dan de concentratie PM\textsubscript{10} op het meetstation in het Vondelpark (respectievelijk 25,5 µg/m3 en 21,0 µg/m3). De situatie voor 2014 was vergelijkbaar (respectievelijk 25,1 µg/m3 en 20,8 µg/m3). De concentratie PM\textsubscript{10} is op het meetstation Wijk aan Zee dus ongeveer 4 µg/m3 hoger dan op het meetstation in het Vondelpark.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{pm10_concentratie_wijk_aan_zee.png}
\caption{Windrichting en PM\textsubscript{10} concentratie in Wijk aan Zee}
\end{figure}

In figuur 4.2 is te zien dat de PM\textsubscript{10} concentratie hoger is bij wind uit zuidelijke tot zuidwestelijke richtingen. Dat laat zien dat het industriegebied IJmond een belangrijke bijdrage levert aan de
hoeveelheid fijn stof in de lucht in Wijk aan Zee. Op dagen dat de wind over het industriegebied IJmond waait richting het meetpunt, is de concentratie gemiddeld hoger dan 45 µg/m³.

4.5 Conclusie PM₁₀

De meetresultaten laten zien dat het industriegebied IJmond een belangrijke bijdrage levert aan de hoeveelheid fijn stof in de lucht in Wijk aan Zee. Daarnaast was de concentratie PM₁₀ tijdens de JOAQUIN metingen op het meetstation Wijk aan Zee ongeveer 4,5 µg/m³ hoger dan op het stadsachtergrondstation in het Vondelpark.

Aan de wettelijke grenswaarden voor PM₁₀ wordt voldaan. De gezondheidskundige grenswaarde wordt echter overschreden. Voor fijn stof is er overigens geen grenswaarde waar beneden geen gezondheidsschade optreedt. Het is vanuit gezondheidskundig perspectief aan te bevelen te streven naar zo laag mogelijke concentraties fijn stof.

Uit de wetenschappelijke kennis die er bestaat over het effect van PM₁₀ op sterfte kan afgeleid worden dat een verhoging van 4,5 µg/m³ PM₁₀ samenhangt met een verkorting van het leven van ongeveer twee maanden. Overigens zijn in 2013 op meetstations bij drukke wegen in Amsterdam vergelijkbare concentraties PM₁₀ gemeten als in Wijk aan Zee. Het is de verwachting dat bij mensen die meer PM₁₀ inademen vaker hart-en vaatziekten en longziekten voorkomen. Er is in dit rapport geen rekening gehouden met zeezoutcorrectie.
5 Roet

5.1 Inleiding
Roet is een bestanddeel van fijn stof. Roetdeeltjes zijn meestal kleiner dan 1 µm en wegen daarom relatief weinig. Daardoor draagt roet meestal slechts in beperkte mate bij aan de massaconcentratie, waarin fijn stof normaal gesproken wordt uitgedrukt. Roetdeeltjes bestaan voornamelijk uit koolstof en hieraan kunnen allerlei verbindingen vastzitten, zoals metalen en organische stoffen. Roet komt vrij bij de verbranding van fossiele brandstoffen zoals steenkool, cokes en aardolieproducten. Belangrijke bronnen zijn wegverkeer (met name dieselmotoren), scheepvaartverkeer, verbranding van organisch materiaal (bijvoorbeeld biomassa en houtkachels) en hoogovens.

Er bestaan verschillende meetmethoden voor roet: automatisch als Black Smoke (BS, ouderwetse methode) of Black Carbon (BC, moderne methode) of door destructieve analyse (pyrolyse) van fijn stof verzameld op een filter als Elemental Carbon (EC). De resultaten die in dit rapport zijn beschreven, zijn gemeten als Elemental Carbon. Deze uitkomsten zijn niet direct vergelijkbaar met Black Smoke of Black Carbon. Wel zijn er rekenmethoden beschikbaar om de resultaten vergelijkbaar met elkaar te maken. Hieronder wordt de methode om EC te meten kort toegelicht.

Metten elemental Carbon (EC)
Elemental Carbon (EC) is elementair koolstof en een onderdeel van de totale hoeveelheid koolstof. EC wordt gemeten met behulp van een filter waarop de concentratie fijn stof wordt bepaald, welke later in een laboratorium wordt geanalyseerd door middel van pyrolyse. De totale hoeveelheid koolstof (Total Carbon, TC) bestaat uit organisch gebonden koolstof (Organic Carbon, OC) en elementair koolstof (Elemental Carbon, EC) met ieder een eigen verbrandingstemperatuur.

\[
TC = EC + OC \quad \text{(total carbon=elemental carbon+organic carbon)}
\]

TC (en OC) worden bij deze meetmethode ook vastgesteld, maar deze gegevens zijn niet relevant vanuit gezondheidskundig perspectief en kunnen terzijde worden gelegd.
5.2 Concentratie en grenswaarde
De gemiddelde EC concentratie in Wijk aan Zee gemeten tijdens het JOAQUIN project was 0,72 µg/m3. In het Vondelpark was de EC concentratie gedurende dezelfde periode 0,56 µg/m3 (zie figuur 5.1).

Voor EC bestaat geen wettelijke grenswaarde noch een gezondheidskundige grenswaarde. Voor EC geldt op dit moment, net als voor fijn stof, dat er geen waarde is aan te geven waaronder geen gezondheidseffecten te verwachten zijn.

Fig. 5.1 EC concentraties (zwarte balk: 95% betrouwbaarheidsinterval) in Wijk aan Zee en in het Vondelpark Amsterdam tijdens de JOAQUIN metingen.
5.3 Gezondheidskundige effecten

In de (nog steeds voortdurende) zoektocht naar de exacte oorzaak van de gezondheidseffecten die samenhangen met PM10 bleek dat op plaatsen waar veel (zwarte) roetdeeltjes in de lucht voorkomen, zoals bij drukke wegen, meer gezondheidseffecten optreden. Hierbij gaat het onder andere om luchtwegklachten en longfunctiedaling bij kinderen en hart- en vaatziekten bij volwassenen. Roet is één van de belangrijke bestanddelen van PM10 waar het gaat om het veroorzaken van sterfte.

Om een inschatting te maken van effecten op de gezondheid kan worden uitgerekend wat het verlies aan levensverwachting is. Voor een gemiddeld persoon geldt dat per 0,5 microgram blootstelling (roetfractie in PM2,5) de levensverwachting afneemt met ongeveer 3 maanden bij levenslange blootstelling aan verkeersgerelateerde luchtverontreiniging. Het is onduidelijk of het roet in de IJmond vergelijkbaar is met verkeersgerelateerd roet, omdat het voor een belangrijk deel afkomstig is van een andere bron.
5.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee
De EC concentratie in Wijk aan Zee was 0,72 µg/m³ en in het Vondelpark 0,56 µg/m³. Dat betekent dat in Wijk aan Zee meer EC in de lucht teruggevonden wordt dan in het Vondelpark.

Figuur 5.2 Windrichting en EC concentratie in Wijk aan Zee (stippellijn: gemiddelde concentratie).

Uit figuur 5.2 blijkt dat de concentratie EC in de lucht in Wijk aan Zee voor een belangrijk deel wordt bepaald door een bron ten zuiden van het meetpunt. Op dagen met zuidenwind kan de EC concentratie meer dan 1,5 µg/m³ bedragen.
5.5 Conclusie roet
De concentratie EC op het meetstation Wijk aan Zee (0,72 µg/m³) is significant (bijna 30%) hoger ten opzichte van het meetstation in het Vondelpark (0,56 µg/m³). Uit de metingen die in het reguliere meetnet van de stad Amsterdam gedaan worden blijkt dat de voor JOAQUIN gevonden EC concentratie representatief is; in 2013 was de jaargemiddelde concentratie EC in het Vondelpark 0,5 µg/m³. Op een sterk verkeersbelaste locatie (Jan van Galenstraat te Amsterdam) was de jaargemiddelde concentratie in 2013 1,4 µg/m³. Bij zuidenwind is de EC concentratie in Wijk aan Zee aanzienlijk verhoogd. Dat duidt erop dat het zuidelijk gelegen industriegebied IJmond een belangrijke bron is van de relatief hoge concentratie EC in Wijk aan Zee.

Mensen die in de stad hun hele leven aan een drukke weg wonen, leven ten gevolge van roet gemiddeld ongeveer zes maanden korter dan mensen die niet aan een drukke weg wonen. Het is de verwachting dat bij mensen die meer roet inademen vaker hart-en vaatziekten en longziekten voorkomen. In de stad is het meeste roet afkomstig van wegverkeer. Uit de wetenschappelijke kennis die er bestaat over het effect van verkeersgerelateerde roet op sterfte, zou geconcludeerd kunnen worden dat een verhoging van 0,16 µg/m³ roet samenhangt met een verkorting van het leven van ongeveer één maand (bij levenslange blootstelling). Het is onduidelijk of het roet in de IJmond vergelijkbaar is met verkeersgerelateerd roet, omdat het voor een belangrijk deel afkomstig is van een andere bron.
6 Elementen (waaronder metalen)

6.1 Inleiding
In de staalindustrie worden onder andere chroom, nikkel en mangaan gebruikt om het staal sterker te maken. Ze kunnen worden uitgestoten als ze worden toegevoegd aan het ijzer en bijvoorbeeld als het gemolten staal wordt bewerkt. Daarnaast bevatten de grondstoffen die gebruikt worden in de staalindustrie veel verschillende elementen, die allemaal vrij kunnen komen tijdens het productieproces.

Metalen in PM10 zouden mede-veroorzakers van de gezondheidseffecten van fijn stof kunnen zijn. Huidig onderzoek richt zich op zogenaamde transitiemetalen zoals ijzer, vanadium, nikkel, chroom, koper, zink, kobalt en mangaan. Deze metalen kunnen door reacties in de luchtwegen beschadigingen veroorzaken, die mogelijk tot gezondheidseffecten kunnen leiden.

De term zware metalen wordt in dit rapport bewust niet gebruikt, omdat hiervoor geen eenduidige definitie te vinden is in de literatuur. De term zware metalen wordt vaak gebruikt om metalen en semi-metalen aan te duiden die geassocieerd worden met vervuiling en giftigheid. In dit rapport wordt gesproken van elementen, waaronder metalen.

Metalen kunnen worden ingedeeld op basis van kennis over hoe ze reageren met andere stoffen. Metalen komen niet alleen in metalische vorm voor, maar kunnen ook reageren met andere stoffen en vormen dan een organische of anorganische verbinding. Alhoewel dit gezondheidskundig relevant kan zijn, maakt de meetmethode die in dit onderzoek gebruikt is geen onderscheid tussen de verschillende vormen waarin deze elementen voorkomen. De totale hoeveelheid van het element in de PM10 fractie is bepaald.

Tabel 6.1 geeft een indicatie van elementen die in de lucht terecht kunnen komen door verschillende bronnen. Dit is een globaal en niet uitputtend, overzicht. Er zijn vijf categorieën bronnen onderscheiden die kunnen zorgen voor de emissie van de onderzochte elementen naar de omgeving; 1. opwaaiend bodemstof, 2. zee, 3. weg- en scheepvaartverkeer, 4. staalindustrie, 5. elektriciteitsopwekking zoals kolencentrales, biomassaverbranding en olieverbranding. Van andere elementen is in de literatuur geen duidelijk te onderscheiden bron terug te vinden. De cokes en erts die als grondstoffen gebruikt worden in de staalindustrie bevatten naast ijzer altijd allerlei verontreinigingen. Deze kunnen allemaal in kleine hoeveelheden in de lucht terecht komen tijdens het productieproces.
GGD Amsterdam
Afdeling Leefomgeving

Fijn stof in de IJmond: Samenstelling en gezondheidskundige relevantie

Tabel 6.1 Bronnen van elementen ingedeeld in vijf categorieën (indicatief).

<table>
<thead>
<tr>
<th>Bronnen</th>
<th>Opwaaiend bodemstof⁴</th>
<th>Zee</th>
<th>Wegverkeer en scheepvaart</th>
<th>Staal-industrie</th>
<th>Electriciteits-opwekking⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementen</td>
<td>Arseen</td>
<td>Calcium</td>
<td>Vanadium</td>
<td>Arseen</td>
<td>Beryllium</td>
</tr>
<tr>
<td></td>
<td>Chroom-3</td>
<td>Chloride</td>
<td>Nikkel</td>
<td>Cadmium</td>
<td>Cadmium</td>
</tr>
<tr>
<td></td>
<td>IJzer</td>
<td>Kalium</td>
<td></td>
<td>Calcium</td>
<td>Kalium</td>
</tr>
<tr>
<td></td>
<td>Kobalt</td>
<td>Magnesium</td>
<td></td>
<td>Chroom</td>
<td>IJzer</td>
</tr>
<tr>
<td></td>
<td>Koper</td>
<td>Natrium</td>
<td></td>
<td>Kalium</td>
<td>Kobalt</td>
</tr>
<tr>
<td></td>
<td>Mangaan</td>
<td></td>
<td></td>
<td>Lood</td>
<td>Mangaan</td>
</tr>
<tr>
<td></td>
<td>Nikkel</td>
<td></td>
<td></td>
<td>Nickel</td>
<td>Selenium</td>
</tr>
<tr>
<td></td>
<td>Silicium</td>
<td></td>
<td></td>
<td>Selenium</td>
<td>Thallium</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td></td>
<td></td>
<td></td>
<td>Titanium</td>
</tr>
<tr>
<td></td>
<td>Zink</td>
<td></td>
<td></td>
<td></td>
<td>Vanadium</td>
</tr>
</tbody>
</table>

6.2 Concentratie en grenswaarde

Concentraties

In tabel 6.2 is het indicatieve jaargemiddelde en de bijdrage van industriegebied IJmond per element weergegeven in Wijk aan Zee (Meetprogramma IJmond) en voor een gedeelte van de elementen de gemiddelde gemeten concentratie in Wijk aan Zee en Vondelpark (JOAQUIN).

In tabel 6.2 is te zien dat de bijdrage van het industriegebied IJmond soms hoger is dan de gemiddelde concentratie in Wijk aan Zee, deze getallen zijn vetgedrukt in de kolom ‘bijdrage industriegebied in Wijk aan Zee’. De bijdrage is bepaald door de gemiddelde concentratie uit de belaste windrichting te verminderen met de concentratie gemeten op dezelfde dag op het dan onbelaste tegenoverliggende meetstation. De gepresenteerde concentraties uit het meetprogramma IJmond en het JOAQUIN meetprogramma zijn niet één op één te vergelijken omdat de gemiddelden voor andere perioden gelden en bepaald zijn op basis van steekproeven. Het gaat bij beide meetprogramma’s om een indicatief jaargemiddelde. Er zijn geen grote verschillen te zien tussen de beide meetprogramma’s, ogenschijnlijke verschillen komen voort uit normale variatie.

Uit de metingen die voor het JOAQUIN programma zijn gedaan is in beide kolommen onder Meetprogramma JOAQUIN tabel 6.2 te zien of er een significant verschil is tussen de concentratie in Wijk aan Zee en Vondelpark. Als dit het het geval is, zijn deze getallen vetgedrukt. De concentraties arseen, cadmium, ijzer, lood, mangaan en vanadium in Wijk aan Zee zijn hoger dan in het Vondelpark in deze meetperiode. Voor de volgende elementen is er geen significant verschil te zien tussen Vondelpark en Wijk aan zee; antimoon, barium, chroom, kalium en nikkel. De concentratie koper en molybdeen in PM10 was in het Vondelpark hoger dan in Wijk aan Zee.

⁴ Concentraties in de lucht zijn heel laag in vergelijking met antropogene bronnen. Deze elementen kunnen worden opgewerkt ten gevolge van wegverkeer.

⁵ Kolencentrales, biomassa-verbranding, olieverbranding

⁶ Deze elementen kunnen vrijkomen uit katalysatoren of door sligtage van banden en remmen.
Fijn stof in de IJmond: Samenstelling en gezondheidskundige relevantie

Tabel 6.2 Indicatieve jaargemiddelden en geschatte bijdrage van het industriegebied IJmond aan concentratie in Wijk aan Zee en resultaten van de JOAQUIN metingen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>180,00</td>
<td>0,00</td>
<td>0,84</td>
<td>1,08</td>
<td></td>
</tr>
<tr>
<td>Antimoon</td>
<td>0,16</td>
<td>0,00</td>
<td>0,61</td>
<td>0,46</td>
<td>+</td>
</tr>
<tr>
<td>Arseen</td>
<td>0,62</td>
<td>0,22</td>
<td>4,81</td>
<td>3,58</td>
<td>4,21</td>
</tr>
<tr>
<td>Barium</td>
<td>0,05</td>
<td>0,00</td>
<td>0,58</td>
<td>2,40</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td></td>
<td></td>
<td>0,42</td>
<td>0,12</td>
<td>+</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5,39</td>
<td>1,06</td>
<td>760,00</td>
<td>6,47</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td></td>
<td></td>
<td>510,00</td>
<td>5,47</td>
<td></td>
</tr>
<tr>
<td>Chroom</td>
<td>310,00</td>
<td>10,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosfor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IJzer</td>
<td>680,00</td>
<td>2390,00</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Kalium</td>
<td>230,00</td>
<td>180,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kobalt</td>
<td>3,28</td>
<td>0,01</td>
<td>3,28</td>
<td>6,37</td>
<td>8,88</td>
</tr>
<tr>
<td>Koper</td>
<td>0,31</td>
<td>0,21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lood</td>
<td>18,93</td>
<td>72,56</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Magnesium</td>
<td>4630,00</td>
<td>370,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangaan</td>
<td>4,67</td>
<td>5,74</td>
<td>6,15</td>
<td>6,26</td>
<td>+</td>
</tr>
<tr>
<td>Molybdeen</td>
<td>4,09</td>
<td>4,51</td>
<td>5,74</td>
<td>2,25</td>
<td>+</td>
</tr>
<tr>
<td>Natrium</td>
<td>0,05</td>
<td>0,00</td>
<td>0,05</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Platina</td>
<td>1,20</td>
<td>2,00</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Selenium</td>
<td>1600,00</td>
<td>0,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>2,43</td>
<td>0,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>0,28</td>
<td>1,06</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Tin</td>
<td>19,42</td>
<td>9,04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td></td>
<td></td>
<td>6,15</td>
<td>6,26</td>
<td>+</td>
</tr>
<tr>
<td>Vanadium</td>
<td></td>
<td></td>
<td>4,09</td>
<td>4,51</td>
<td>+</td>
</tr>
<tr>
<td>Yttrium</td>
<td>0,06</td>
<td>0,01</td>
<td>0,06</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Zink</td>
<td>47,72</td>
<td>100,07</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Niet alle elementen worden in dit hoofdstuk behandeld. Er is besloten dit te beperken tot de elementen waarvoor aan minimaal één van de volgende drie selectiecriteria werd voldaan:

1) wanneer de bijdrage van het industriegebied IJmond aan de concentratie in Wijk aan Zee hoger was dan de gemiddelde concentratie aldaar.

2) wanneer de concentratie in Wijk aan Zee hoger was dan in het Vondelpark.
3) wanneer één van de gemiddelde concentraties (van de twee meetprogramma’s) in Wijk aan Zee boven een grenswaarde ligt.

Tabel 6.3. Jaargemiddelde grenswaarden metalen en andere elementen (in ng/m3), juni 2015

<table>
<thead>
<tr>
<th>Normen</th>
<th>Wettelijke grenswaarde (Wet Milieubeheer)</th>
<th>Gezondheidkundige grenswaarde (RIVM / ATSDR)</th>
<th>Bron TCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>Grenswaarde2</td>
<td>Streef- of richtwaarde3</td>
<td>RIVM (TCL)</td>
</tr>
<tr>
<td>Antimoon</td>
<td>-</td>
<td>3200</td>
<td>-</td>
</tr>
<tr>
<td>Arseen</td>
<td>6</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Barium</td>
<td>-</td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td>Beryllium</td>
<td>-</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Calcium</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chroom verbindingen</td>
<td>-</td>
<td>2,5</td>
<td>-</td>
</tr>
<tr>
<td>Chroom 3st</td>
<td>-</td>
<td>60.000</td>
<td>-</td>
</tr>
<tr>
<td>Fosfor</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ijzer</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalium</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kobalt</td>
<td>-</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>Koper</td>
<td>-</td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td>Lithium</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lood</td>
<td>500</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>Magnesium</td>
<td>-</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>Molybdeen</td>
<td>-</td>
<td>12.000</td>
<td>-</td>
</tr>
<tr>
<td>Natrium</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nikkel</td>
<td>20</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>Platinum</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Selenium</td>
<td>-</td>
<td>20.000</td>
<td>-</td>
</tr>
<tr>
<td>Silicium</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Strontium</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thallium</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tin</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Titanium</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vanadium</td>
<td>-</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>Yttrium</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zink</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

6.3 Gezondheidskundige effecten
Gezondheidseffecten van elementen in fijn stof zijn meestal onderzocht bij dieren of bij mensen die beroepsmatig zijn blootgesteld. Deze beroepsmatige blootstelling betreft vaak inademing van relatief hoge concentraties. Om ondanks een gebrek aan kennis toch meer te kunnen zeggen over blootstelling aan lagere concentraties, zoals rond industriegebied IJmond gemeten zijn, wordt de dosis-effect relatie geëxtrapoleerd. Soms zijn er zo weinig gegevens beschikbaar dat ook door middel van extrapolatie geen grenswaarde kan worden vastgesteld. Dit geldt bijvoorbeeld voor ijzer.

Dit hoofdstuk is niet uitputtend en benoemt niet alle mogelijke gezondheidseffecten van de geselecteerde stoffen, het is bedoeld om algemene informatie te verstrekken over mogelijke gezondheidseffecten na inademing. Of gezondheidseffecten kunnen ontstaan is daarbij zeer afhankelijk van de ingeademde concentratie en de duur van inademing. De belangrijkste bronnen die zijn gebruikt om gezondheidseffecten in kaart te brengen zijn de Amerikaanse ATSDR (Agency for Toxic Disease Registry) en EPA (Environmental Protection Agency). De genoemde gezondheidseffecten zullen meestal pas optreden na inademing van hoge concentraties, bijvoorbeeld tijdens werksituaties. Als gezondheidseffecten kunnen worden verwacht bij de in dit onderzoek gemeten concentraties in de lucht, dan zal dit expliciet worden vermeld in de tekst.

Eventuele kankerverwekkende eigenschappen worden beschreven aan de hand van de IARC (International Agency for Research on Cancer) classificatie, zie bijlage 1. Als de stof niet is opgenomen in de IARC classificatie, wordt nagegaan of er informatie over kankerverwekkende eigenschappen bekend is bij de EPA (Environmental Protection Agency). Kankerverwekkende en niet-kankerverwekkende effecten op de gezondheid worden hieronder per stof apart beschouwd, getoetst en beschreven.

Hieronder worden de gezondheidskundige aspecten van de geselecteerde elementen (zie 6.3.1 t/m 6.3.11) in alfabetische volgorde behandeld. De nadruk bij de beschrijving van de gezondheidseffecten ligt op blootstelling via de lucht in de woonsituatie. Blootstelling van bewoners van de IJmondregio gedurende de werksituatie is hier nadrukkelijk niet in meegenomen.

6.3.1 Arseen
Sommige metalen zoals arseen kunnen als metalliche vorm voorkomen, maar ook als verbinding (organisch of anorganisch). Van met name anorganisch arseen is bekend dat bij hoge concentraties gezondheidseffecten kunnen ontstaan. Mensen worden in Nederland voornamelijk blootgesteld aan arseen via voeding en drinkwater. De bijdrage via de lucht is over het algemeen klein.

Korte termijn blootstelling aan hoge concentraties arseen kan leiden tot misselijkheid, diarree en buikpijn. Effecten op het centrale en perifere zenuwstelsel zijn opgetreden bij werknemers in de industrie die acuut zijn blootgesteld aan grote hoeveelheden anorganisch arseen. Lange termijn blootstelling via de lucht aan anorganisch arseen kan leiden tot effecten op het maag-darm stelsel, bloedarmoede, perifere neuropathie, huidafwijkingen, lever- en nierschade en longkanker.

De gemeten indicatieve concentraties arseen zijn laag en liggen bijna een factor 10 onder de wettelijke en gezondheidskundige grenswaarde. Deze grenswaarden zijn onder andere gebaseerd op de hierboven genoemde gezondheidseffecten. Dat betekent dat de arseenconcentratie in Wijk aan Zee zo laag is dat er geen gezondheidseffecten van worden verwacht.

Kankerverwekkendheid
Arseen en anorganische arseenverbindingen zijn kankerverwekkend bij mensen (IARC groep 1: kankerverwekkend), vanwege het risico op longkanker. Het maximaal toelaatbaar risico wordt niet overschreden.
6.3.2 Cadmium
Hoge concentraties cadmium in de lucht kunnen al na korte tijd zorgen voor effecten op luchtwegen zoals luchtwegirritatie. Langdurige inademing van hoge concentraties wordt daarnaast in verband gebracht met effecten op nieren en longen. De gemeten indicatieve concentraties cadmium zijn laag en liggen een factor acht of meer onder de wettelijke en gezondheidskundige grenswaarde, welke zijn gebaseerd op de hierboven genoemde gezondheidseffecten. Gezondheidseffecten ten gevolge van cadmium in de lucht zijn daarom op basis van de huidige kennis niet te verwachten bij bewoners van de IJmondregio.

Kankerverwekkendheid
Cadmium is geclassificeerd als 'kankerverwekkend bij mensen' (IARC groep 1: kankerverwekkend), voornamelijk vanwege het verhoogde risico op longkanker bij langdurige blootstelling aan hoge concentraties. Er is geen toelaatbaar risico voor de kankerverwekkende eigenschappen van cadmium vastgesteld.

6.3.3 Chroom
Chroom komt in verschillende vormen voor, zoals metallic chroom, driewaardig (chroom-3) en zeswaardig (chroom-6) chroom. Het is aannemelijk dat de concentratie chroom die in de lucht is gemeten zowel uit driewaardig, zeswaardig en metallic chroom bestaat. Omdat met name zeswaardig chroom schadelijk kan zijn, wordt daar in deze paragraaf op ingegaan.

Kortdurende inademing van hoge concentraties chroom-6 kan schade aan de luchtwegen en longen teweegbrengen. Langdurige blootstelling van werknemers via inademing kan leiden tot een allergie voor chroomverbindingen, wat zich uit als luchtwegklachten en/of huiduitslag. Luchtwegklachten ten gevolge van chroom in de lucht zijn op basis van de huidige kennis niet te verwachten in de IJmond, omdat de gemeten indicatieve concentraties in de lucht veel lager zijn dan de concentraties waarbij zulke klachten in de literatuur zijn gerapporteerd.

Kankerverwekkendheid
Chroom-6 wordt geclassificeerd als 'kankerverwekkend voor mensen' (IARC groep 1) vanwege het risico op longkanker. Metallic chroom en driewaardig chroom worden ingedeeld bij 'niet classificeerbaar als kankerverwekkend' (IARC groep 3).

Omdat de verschillende vormen van chroom niet afzonderlijk zijn bepaald, is niet uit te sluiten dat het maximaal toelaatbaar risico (MTR) voor chroom-6 wordt overschreden. Dit kan echter ook niet worden bevestigd. Het MTR is bij chroom-6 vastgesteld als norm voor kankerrisico. Overigens is er voor chroom geen duidelijk verschil tussen de concentratie in Wijk aan Zee en die in het Vondelpark gevonden.

6.3.4 IJzer
De standaard bronnen die in dit rapport over gezondheidseffecten van elementen geraadpleegd zijn geven geen informatie over de gezondheidseffecten van inademing van ijzer. Daarom is naar verdere wetenschappelijke informatie gezocht. Een onderzoek van Dusseldorp et al. uit 1995 laat zien dat op dagen met meer ijzer in de lucht, bewoners van Wijk aan Zee meer luchtwegklachten hadden en meer medicijnen gebruikten tegen luchtwegklachten dan op dagen met minder ijzer in de lucht.

Vanwege het ontbreken van een grenswaarde kan de gemeten indicatieve concentratie ijzer niet worden getoetst.

6.3.5 Lood
Blootstelling aan lood is bij kinderen in verband gebracht met een negatief effect op het leer vermogen. Hoewel in Wijk aan Zee aan de wettelijke en gezondheidskundige grenswaarde voor lood wordt voldaan, kunnen effecten van lood op het centrale zenuwstelsel bij kinderen al worden waargenomen bij
concentraties rond of onder de 500 ng/m³. Bij volwassenen zijn in onderzoek effecten op het cardiovasculair systeem bij volwassenen waargenomen bij blootstellingen op het niveau of onder de gezondheidskundige grenswaarde. Voor de hierboven genoemde gezondheidseffecten moet genoemd worden dat de EPA geen grenswaarde heeft vastgesteld, omdat effecten op de gezondheid al bij zeer lage concentraties kunnen optaan. Naar verwachting zal in de toekomst de grenswaarde naar beneden worden bijgesteld. De gemeten indicatieve concentratie ligt een factor 25 of meer onder de huidige wettelijke en gezondheidskundige grenswaarde, maar iedere reductie van lood in de lucht zal naar alle waarschijnlijkheid (net als bij fijn stof) gezondheidswinst opleveren.

Kankerverwekkendheid
Afhankelijk van de vorm waarin het voorkomt wordt lood ingedeeld bij IARC groep 2A (anorganisch lood, waarschijnlijk kankerverwekkend voor mensen), 2B (metallisch lood, mogelijk kankerverwekkend voor mensen) of 3 (organisch lood, niet te classificeren als kankerverwekkend voor mensen). De metingen in dit project maken geen onderscheid tussen de verschillende vormen van lood en daarnaast ontbreekt een grenswaarde voor het maximaal toelaatbaar risico met betrekking tot kankerverwekkendheid. Hierdoor kan geen nadere uitspraak worden gedaan over het kankerrisico bij blootstelling aan de gemeten loodconcentraties.

6.3.6 Mangaan
Inademing van hoge concentraties mangaan kan luchtwegirritatie en effecten op de voortplanting veroorzaken. Langdurige inademing van mangaan is in verband gebracht met neurologische effecten (neurotoxiciteit) en effecten op het centraal zenuwstelsel. Bij zeer hoge blootstelling kan 'manganisme' optreden, dit is relevant in een werksituatie.

De gemeten indicatieve concentraties mangaan zijn laag en liggen een factor 5,5 of meer onder de gezondheidskundige grenswaarde, welke is gebaseerd op de hierboven genoemde gezondheidseffecten. Gezondheidseffecten ten gevolge van mangaan in de lucht zijn daarom op basis van de huidige kennis niet te verwachten bij bewoners van de IJmondregio.

Kankerverwekkendheid
Mangaan is niet door IARC opgenomen in de indeling van kankerverwekkende stoffen. Door de Amerikaanse EPA is mangaan vanwege gebrek aan gegevens ingedeeld bij klasse D 'niet in te delen als kankerverwekkend'.

6.3.7 Nikkel
In de literatuur is na acute inademing van nikkel melding gemaakt van long- en nierschade. Langdurige inademing van nikkel kan leiden tot luchtwegklachten, waaronder een specifiek type astma. Er is een verband gevonden tussen nikkel en ziekenhuisopnamen ten gevolge van hart- en vaatproblemen. De gemeten indicatieve concentratie nikkel ligt een factor 3,5 of meer onder de wettelijke richtwaarde en een factor 9 of meer onder de Nederlandse gezondheidskundige grenswaarde. Gezondheidseffecten ten gevolge van nikkel in de lucht zijn daarom op basis van de huidige kennis niet te verwachten bij bewoners van de IJmondregio.

Kankerverwekkendheid
Nikkelverbindingen zijn kankerverwekkend bij mensen (IARC groep 1), voornamelijk vanwege het verhoogde risico op long- en neuskanker. Metallisch nikkel is door IARC opgenomen in klasse 2B, dat wil zeggen dat het mogelijk kankerverwekkend is voor mensen. De grens voor toelaatbaar risico wordt niet overschreden.

6.3.8 Selenium
Acute, hoge blootstelling kan bij inademing leiden tot luchtwegklachten en buikpijn. Daarnaast zijn maag-darmklachten, neurologische effecten en oogirritatie gemeld in de literatuur na inademing van
seleniumverbindingen. Lange termijn blootstelling aan elementair selenium of seleniumdioxide in de lucht kan leiden tot luchtwegklachten. De gemeten indicatieve concentratie selenium ligt ruim een factor 16000 onder de Nederlandse gezondheidskundige grenswaarde. De hierboven genoemde gezondheidseffecten ten gevolge van selenium in de lucht zijn pas te verwachten bij relatief hoge concentraties en zijn op basis van de huidige kennis niet te verwachten bij bewoners van de IJmondregio.

Kankerverwekkendheid
Selenium is ‘niet classificeerbaar als kankerverwekkend voor mensen’ (IARC groep 3), voornamelijk vanwege gebrek aan gegevens bij mensen en dieren.

6.3.9 Thallium
Langdurige inademing van thallium in een werksituatie kan leiden tot effecten op het centraal zenuwstelsel. De hierboven genoemde gezondheidseffecten ten gevolge van thallium in de lucht zijn pas te verwachten bij relatief hoge concentraties en zijn op basis van de huidige kennis niet te verwachten bij bewoners van de IJmondregio.

Kankerverwekkendheid
Thallium is zowel door IARC als EPA niet opgenomen in het classificatiesysteem voor kankerverwekkende eigenschappen.

6.3.10 Vanadium
Inademing van vanadium en vanadiumverbindingen (zoals vanadiumpentoxide) kunnen luchtwegklachten veroorzaken. Daarnaast kan blootstelling aan hoge concentraties vanadiumstof ook oogirritatie teweegbrengen. De hierboven genoemde gezondheidseffecten echter zijn pas te verwachten bij relatief hoge concentraties. De indicatieve concentraties vanadium gemeten in Wijk aan Zee zijn laag en liggen een factor 174 onder de gezondheidskundige grenswaarde van het RIVM en een factor 17 onder de gezondheidskundige grenswaarde van het Amerikaanse ATSDR. Daarom zijn op basis van de huidige kennis geen gezondheidseffecten ten gevolge van vanadium te verwachten bij bewoners van de IJmondregio.

Kankerverwekkendheid
Zowel door IARC als EPA is vanadium niet opgenomen in het classificatiesysteem voor kankerverwekkende eigenschappen. Vanadium pentoxide is mogelijk kankerverwekkend voor mensen (IARC 2b).

6.3.11 Zink
Inademing van zeer hoge concentraties kan resulteren in metaaldampkoorts. Verder is er weinig bekend over de gezondheidseffecten van zink in de lucht. Metaaldampkoorts is bij de indicatief gemeten concentraties in Wijk aan Zee op basis van de huidige kennis niet te verwachten bij bewoners van de IJmondregio.

Kankerverwekkendheid
Door IARC is zink niet opgenomen in het classificatiesysteem voor kankerverwekkende eigenschappen. EPA heeft vastgesteld dat zink niet is te classificeren als kankerverwekkend (groep D).

6.3.12 Gezondheidseffecten elementen samengevat
In het verzamelde PM10 zijn dertig elementen (waaronder metalen) bepaald. Voor geen van de indicatief gemeten elementen zijn wettelijke of gezondheidskundige grenswaarden overschreden. Van chroom is niet duidelijk of er een grenswaarde wordt overschreden, omdat er bij de metingen geen onderscheid wordt gemaakt tussen de verschillende vormen van chroom. Voor zestien elementen, waaronder ijzer, is geen grenswaarde vastgesteld waardoor geen toetsing kon plaatsvinden.
Wat betekent voldoen aan grenswaarden
Als een element niet kankerverwekkend is en de concentratie onder een grenswaarde ligt, dan zijn bij die concentratie geen gezondheidseffecten te verwachten op basis van de huidige wetenschappelijke kennis. Bij kankerverwekkende stoffen wordt getoetst aan een grens, het Maximaal Toelaatbaar Risico. Dat betekent dat als de concentratie van een kankerverwekkende stof onder deze grenswaarde ligt, de extra kans op kanker acceptabel wordt geacht (zie toelichting MTR op p14).

Kankerverwekkende elementen
De volgende van de geselecteerde elementen (zie pagina 26 voor definitie selectie) zijn ingedeeld als kankerverwekkend voor mensen: arseen, anorganische arseenverbindingen, cadmium, chroom-6 en nikkelverbindingen. Anorganisch lood is waarschijnlijk kankerverwekkend en de elementen metallisch lood, metallisch nikkel en vanadiumpentoxide zijn mogelijk kankerverwekkend voor mensen. De gemeten concentraties van al deze elementen voldoen aan het maximaal toelaatbaar risico (MTR). Dat wil zeggen dat de kans op kanker ten gevolge van inademing van het element kleiner is dan 1 op 10.000 bij levenslange blootstelling.

Relevante elementen vanuit gezondheidskundig perspectief
De concentratie ijzer in Wijk aan Zee is opvallend hoog. Een artikel van Dusseldorp et. al. uit 1995 laat zien dat er een verband is tussen de concentratie ijzer in de lucht in Wijk aan Zee en bepaalde symptomen van luchtwegklachten en daarnaast is er een verband met het gebruik van onderhoudsmedicatie voor deze klachten. Er is geen norm voor ijzer waaraan getoetst kan worden. Het reduceren van de hoeveelheid ijzer kan mogelijk zorgen voor gezondheidswinst.

De wettelijke en gezondheidskundige grenswaarden voor lood worden niet overschreden. Er kan niet onvermeld blijven dat het Amerikaanse EPA geen grenswaarde voor lood heeft vastgesteld, omdat effecten op de gezondheid al bij zeer lage blootstelling kunnen ontstaan. Ook neerslag van lood uit de lucht op de bodem kan een belangrijke bron zijn voor kinderen. Bij kinderen kan lood een negatief effect op het leervermogen hebben en bij volwassenen zijn effecten op hart en vaten beschreven. Iedere reductie van lood in de lucht zal naar alle waarschijnlijkheid, net als bij fijn stof, gezondheidswinst opleveren.

Het risico op longkanker ten gevolge van chroom-6 is vanuit gezondheidskundig perspectief relevant. Het is onbekend welk aandeel chroom-6 heeft in de concentratie totaal chroom die gemeten is. Er zijn namelijk ook minder gevaarlijke vormen van chroom in de lucht aanwezig, maar hierop is door de meetmethode geen onderscheid gemaakt. Wanneer alle chroom in de vorm van chroom-6 aanwezig zou zijn, dan wordt het maximaal toelaatbaar risico (MTR) voor chroom-6 met ongeveer een factor 2,5 overschreden. Omdat de verschillende vormen van chroom niet afzonderlijk zijn bepaald, is niet uit te sluiten dat de grenswaarde wordt overschreden, maar kan dit ook niet worden bevestigd. Daarom kunnen geen uitspraken gedaan worden over gezondheidsrisico’s ten gevolge van de gevonden chroom concentraties. Het verdient aanbeveling om meer inzicht te krijgen in de chroom-6 concentratie, bijvoorbeeld aan de hand van emissiegegevens of nadere analyses van PM10 op de verschillende vormen van chroom in de IJmond.

Bij kankerverwekkende stoffen kan altijd gezondheidswinst worden behaald door reductie van de uitstoot, ook als de concentratie onder het MTR ligt. De concentraties van de kankerverwekkende elementen arseen en cadmium zijn in Wijk aan Zee hoger dan in het Vondelpark en er is een duidelijke bron.

Uit de resultaten van het meetprogramma IJmond blijkt dat er een duidelijke bijdrage vanuit industriegebied IJmond is aan de concentratie van selenium, thallium, titanium en zink in Wijk aan Zee. Op basis van de huidige kennis geven de concentraties van deze stoffen in Wijk aan Zee geen aanleiding om te verwachten dat daardoor gezondheidseffecten ontstaan.
6.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee

In deze paragraaf wordt ingegaan op hoe de concentraties van de in tabel 6.2 gemarkeerde elementen op het meetstation Wijk aan Zee zich verhouden tot de stadsachtergrondconcentraties op het meetstation in het Vondelpark en of er een bijdrage is vanuit industriegebied IJmond.

6.4.1 Arseen

Uit de resultaten van het meetprogramma IJmond (2011-2013) blijkt dat de bijdrage van het industriegebied IJmond aan de arseenconcentratie beperkt is (tabel 6.2). Uit de JOAQUIN metingen blijkt dat de concentratie arseen in Wijk aan Zee significant hoger was dan in het Vondelpark (zie figuur 6.1).

Figuur 6.1 Arseenconcentratie in Vondelpark en Wijk aan Zee (zwarte balk: 95% betrouwbaarheidsinterval) en richting herkomst arseen in Wijk aan Zee (stippellij: gemiddelde concentratie).

Tijdens zuidenwind en oostenwind was de concentratie arseen in Wijk aan Zee iets hoger dan bij andere windrichtingen (figuur 6.1). Daaruit kan geconcludeerd worden dat het industriegebied IJmond een bijdrage levert aan de arseenconcentratie in Wijk aan Zee.
6.4.2 Cadmium
Uit de resultaten van het meetprogramma IJmond blijkt dat de bijdrage van het industriegebied IJmond aan de cadmiumconcentratie aanzienlijk is (tabel 6.2). Uit de JOAQUIN metingen blijkt dat de cadmiumconcentratie op het meetstation Wijk aan Zee ongeveer drie maal hoger is dan op een stadsachtergrondlocatie, dit verschil met meetstation Vondelpark is ook significant (zie figuur 6.2).

De cadmiumconcentratie in Wijk aan Zee is alleen verhoogd tijdens zuidelijke of zuidwestelijke wind (figuur 6.2). In combinatie met de gegevens uit het meetprogramma IJmond kan geconcludeerd worden dat het verschil tussen Wijk aan Zee en Vondelpark voor het grootste deel ontstaat door de uitstoot van het industriegebied IJmond.

6.4.3 Chroom
Uit de resultaten van het meetprogramma IJmond blijkt dat er een beperkte bijdrage van het industriegebied IJmond is aan de chroom concentratie in Wijk aan Zee (tabel 6.2). Uit de JOAQUIN metingen blijkt tevens dat de concentratie chroom in Wijk aan Zee niet significant verschilt van die in het Vondelpark (zie figuur 6.3).
Een bron ten zuidwesten van Wijk aan Zee draagt bij aan de chroomconcentratie (figuur 6.3). Dat duidt erop dat het Industriegebied IJmond een bijdrage levert aan de gemiddelde chroom concentratie.

6.4.4 IJzer

Uit de resultaten van het meetprogramma IJmond blijkt dat de bijdrage van het industriegebied IJmond aan de ijzerconcentratie aanzienlijk is (tabel 6.2). Uit de JOAQUIN metingen blijkt dat de ijzerconcentratie op het meetstation Wijk aan Zee ongeveer drie maal hoger is dan op een stadsachtergrondlocatie, dit verschil met meetstation Vondelpark is ook significant (zie figuur 6.4).

Figuur 6.3 *Chroom concentratie in Vondelpark en Wijk aan Zee (zwarte balk: 95% betrouwbaarheidsinterval) en richting herkomst chroom in Wijk aan Zee (stippellijn: gemiddelde concentratie).*

Figuur 6.4 *IJzerconcentratie in Vondelpark en Wijk aan Zee (zwarte balk: 95% betrouwbaarheidsinterval) en richting herkomst ijer in Wijk aan Zee (stippellijn: gemiddelde concentratie).*
Dagen met zuidenwind bepalen de ijzerconcentratie in Wijk aan Zee, op zulke dagen is deze concentratie duidelijk hoger dan op dagen met wind uit andere richtingen (figuur 6.4). Ook lijkt er een hogere ijzerconcentratie te zijn bij wind uit het oosten. Het is aannemelijk dat de bron van het ijzer de daar aanwezige staalindustrie (walserij) is.

6.4.5 Lood
Uit de resultaten van het meetprogramma IJmond blijkt een duidelijke bijdrage van het industrigebied IJmond aan de loodconcentratie in Wijk aan Zee (tabel 6.2). De JOAQUIN metingen laten zien dat de concentratie lood in Wijk aan Zee significant hoger was, circa drie maal zo hoog, dan in het Vondelpark (zie figuur 6.5).

Op dagen met zuid- of zuidwestelijke wind is de loodconcentratie in Wijk aan Zee (met name vanuit het zuiden) duidelijk hoger dan op dagen met wind uit andere richtingen (figuur 6.5). Daaruit en uit de analyse van de metingen van Meetprogramma IJmond blijkt dat het verschil in loodconcentratie tussen Wijk aan Zee en Vondelpark voor een belangrijk deel verklaard kan worden door een bijdrage vanuit het industrigebied IJmond.

6.4.6 Mangaan
Uit de resultaten van het meetprogramma IJmond blijkt een duidelijke bijdrage van het industrigebied IJmond aan de mangaanconcentratie in Wijk aan Zee (tabel 6.2). Uit de JOAQUIN metingen blijkt dat de concentratie mangaan in Wijk aan Zee ruim drie maal hoger was, tevens significant, dan in het Vondelpark (zie figuur 6.6).
Uit de JOAQUIN metingen is te concluderen dat de hogere concentratie op meetstation Wijk aan Zee bepaald wordt door bijdragen uit zuiden- of zuidwestelijke richting (figuur 6.6). Ook uit de metingen van Meetprogramma IJmond was al naar voren gekomen dat de bijdrage van staalindustrie aan de mangaanconcentratie in Wijk aan Zee aannemelijk is.

6.4.7 Nikkel
Uit de resultaten van het meetprogramma IJmond blijkt dat er een beperkte bijdrage van het industriegebied IJmond is aan de nikkelconcentratie in Wijk aan Zee (tabel 6.2). Uit de JOAQUIN metingen blijkt dat de concentratie nikkel in Wijk aan Zee niet significant verschilt van die in het Vondelpark (zie figuur 6.7).
Fijn stof in de IJmond: Samenstelling en gezondheidskundige relevantie

Uit de windrichtinganalyse blijkt dat tijdens de JOAQUIN metingen de nikkelconcentratie in Wijk aan Zee hoger is dan gemiddeld wanneer de wind uit westelijk of zuidwestelijke richting komt (figuur 6.7).

6.4.8 Vanadium

Uit de resultaten van het meetprogramma IJmond blijkt dat de bijdrage van het industriegebied IJmond aan de vanadiumconcentratie aanzienlijk is (tabel 6.2). Uit de JOAQUIN metingen blijkt dat de concentratie vanadium in Wijk aan Zee significant hoger was dan in het Vondelpark (zie figuur 6.8). De concentratie op meetstation Wijk aan Zee was bijna drie maal hoger dan op het meetstation in het Vondelpark.

![Vanadium concentratie in Vondelpark en Wijk aan Zee (zwarte balk: 95% betrouwbaarheidsinterval) en richting herkomst vanadium in Wijk aan Zee (stippellijn: gemiddelde concentratie).](image)

Uit de windrichtinganalyse blijkt dat tijdens de JOAQUIN metingen de vanadiumconcentratie in Wijk aan Zee hoger is dan gemiddeld wanneer de wind uit zuidwestelijke richting komt (figuur 6.8). Het is aannemelijk dat het industriegebied IJmond zorgt voor de significant hogere concentratie vanadium in Wijk aan Zee.

6.4.9 Selenium, thallium, titanium en zink

De elementen selenium, thallium, titanium en zink zijn niet gemeten in het in JOAQUIN project. Daarom is er geen vergelijking met het stadsachtergrondstation Vondelpark mogelijk. Uit de resultaten van het meetprogramma IJmond blijkt dat er een duidelijke bijdrage vanuit industriegebied IJmond is aan deze vier elementen in Wijk aan Zee.

6.4.10 Concentraties elementen samengevat

Uit analyse van de gegevens verkregen uit het meetprogramma IJmond en de JOAQUIN metingen blijkt dat de concentratie van de elementen arseen, cadmium, ijzer, lood, mangaan en vanadium in Wijk aan Zee verhoogd is ten opzichte van de concentratie in het Vondelpark. Voor cadmium, ijzer, lood en mangaan is de concentratie in Wijk aan Zee ongeveer drie keer zo hoog (dat is ongeveer 200% meer) als de concentratie in het Vondelpark. Analyse van de bijdrage vanuit verschillende windrichtingen wijst voor al deze elementen op een belangrijke bron ten zuiden of zuidwesten van het meetpunt Wijk aan Zee. Voor arseen en ijzer is ook ten oosten van het meetpunt een bron te zien. Staalindustrie is onder andere in deze richtingen gelegen.
In Wijk aan Zee wordt in de lucht ongeveer 0,5 µg/m³ meer ijzer gevonden dan in het Vondelpark. Dat betekent dat ijzer ongeveer 10% van het verschil in PM₁₀ concentratie tussen Wijk aan Zee en Vondelpark verklaart. De andere elementen dragen slechts beperkt bij aan het massaverschil in PM₁₀ tussen Vondelpark en Wijk aan Zee.
6.5 Conclusie elementen

Concentraties van arsenen, cadmium, ijzer, lood, mangaan en vanadium zijn in Wijk aan Zee duidelijk verhoogd ten opzichte van de concentraties in het Vondelpark. Voor al deze elementen, behalve arsenen, is de concentratie in Wijk aan Zee ongeveer drie keer zo hoog als de concentratie in het Vondelpark. Analyse van de bijdrage bij verschillende windrichtingen wijst voor alle genoemde elementen op een belangrijke bijdrage vanuit zuidelijke en/of zuidwestelijke richting. Van deze elementen verklaart alleen ijzer een deel van het verschil in concentratie PM10 tussen Wijk aan Zee en Vondelpark.

Geen van de elementen hebben wettelijke, beleidsmatige of gezondheidskundige grenswaarden overschreden. Wanneer rekening gehouden wordt met een onderschatting van het jaargemiddelde van ca. 30% door gebruik van het indicatieve jaargemiddelde (op basis van windrichting selectie) blijft deze conclusie onveranderd. Van chroom is niet duidelijk of er een grenswaarde wordt overschreden, omdat er bij de metingen geen onderscheid wordt gemaakt tussen de verschillende vormen van chroom. Voor ijzer bestaat geen gezondheidskundige grenswaarde. Ijzer is het meest voorkomende transitiemetaal in de lucht, en er zijn aanwijzingen dat ijzer verantwoordelijk zou kunnen zijn voor het veroorzaken van luchtwegklachten. Het is niet uitgesloten dat andere transitiemetalen een vergelijkbaar effect hebben.

Bij kankerverwekkende stoffen kan altijd gezondheidswinst worden behaald door reductie van de uitstoot, ook als de concentratie onder het MTR ligt. De concentraties van de kankerverwekkende elementen arsenen en cadmium zijn in Wijk aan Zee hoger dan in het Vondelpark en er is een duidelijke bron. Het is echter onduidelijk in hoeverre blootstelling via de lucht een relevante bijdrage levert aan de totale hoeveelheid van deze metalen in het lichaam. Het is aannemelijk dat de bijdrage die via voeding wordt opgenomen groter is dan de bijdrage die via de lucht wordt opgenomen.

De concentratie lood in Wijk aan Zee is verhoogd ten op zichte van achtergrondstation Vondelpark. Het industriegebied IJmond levert hieraan een belangrijke bijdrage. Hoewel er geen grenswaarde wordt overschreden, zijn gezondheids-effecten niet uitgesloten.

7 Polycyclische Aromatische Koolwaterstoffen

7.1 Inleiding

PAK's zijn polycyclische aromatische koolwaterstoffen, een stofgroep die bestaat uit honderden chemische stoffen met één of twee benzeenringen. Bij alle verbrandingsprocessen onstaan PAK's, met name bij onvolledige verbranding.

PAK's worden bepaald in fijn stof omdat van enkele PAK's bekend is dat deze (waarschijnlijk) of (mogelijk) kankerverwekkend zijn. PAK's worden gemeten door middel van een standaard analysepakket. Analytische methoden hebben een snellere ontwikkeling doorgemaakt dan toxicologische evaluties. Het is niet mogelijk om voor iedere individuele PAK een aparte gezondheidskundige risicobeoordeling te maken, omdat daarvoor onvoldoende toxicologische informatie beschikbaar is.

De grenswaarde is vastgesteld op basis van onderzoek naar mengsels van PAK's afkomstig van cokes-ovens, waarbij benzo(a)pyreen als marker is gebruikt. De reden hiervoor is dat benzo(a)pyreen vanuit gezondheidskundig perspectief de meest relevante PAK is. Op basis van de concentratie benzo(a)pyreen werd berekend hoe groot de additionele kans op kanker was bij levenslange blootstelling aan het gehele mengsel van PAK's, daarmee is het effect van de andere stoffen uit het mengsel meegenomen. Daarom is het niet nodig om de risico's van de individuele stoffen uit het mengsel te beoordelen.

Typische bronnen van PAK's in de buitenlucht zijn houtstook, afvalverbranding, weg- en scheepvaartverkeer, staalindustrie, teren van wegen, sigarettenrook en elektriciteitsopwekking zoals kolencentrales, biomassaverbranding en olieverbranding.
7.2 Concentratie en Grenswaarde

In het meetprogramma IJmond zijn metingen gedaan naar de hoeveelheid PAK’s in PM10. In tabel 7.1 zijn de indicatieve jaargemiddelde concentraties (niet geselecteerd op windrichting) weergegeven van de verschillende PAK’s in Wijk aan Zee en wat de bijdrage is van het industriegebied IJmond. Hieruit blijkt een duidelijke bijdrage van industriegebied IJmond aan alle gemeten PAK’s is in Wijk aan Zee.

<table>
<thead>
<tr>
<th></th>
<th>Wijk aan Zee</th>
<th>Bijdrage industriegebied IJmond in Wijk aan Zee</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzo(a)pyreen</td>
<td>0,52</td>
<td>1,43</td>
</tr>
<tr>
<td>benzo(a)antraceen</td>
<td>0,46</td>
<td>1,29</td>
</tr>
<tr>
<td>benzo(b)fluoranteen</td>
<td>1,09</td>
<td>2,71</td>
</tr>
<tr>
<td>benzo(jk)fluoranteen</td>
<td>0,71</td>
<td>1,80</td>
</tr>
<tr>
<td>benzo(ghi)peryleen</td>
<td>0,66</td>
<td>1,61</td>
</tr>
<tr>
<td>chryseen</td>
<td>0,77</td>
<td>1,88</td>
</tr>
<tr>
<td>dibenzo(ah)antraceen</td>
<td>0,14</td>
<td>0,37</td>
</tr>
<tr>
<td>indeno(123cd)pyreen</td>
<td>0,75</td>
<td>1,79</td>
</tr>
</tbody>
</table>

De wettelijke richt- of streefwaarde voor benzo(a)pyreen is gelijk aan het Maximaal Toelaatbaar Risico (MTR) en is 1 ng/m3. Deze grenswaarde wordt niet overschreden.
7.3 Gezondheidskundige effecten
Blootstelling aan PAK’s wordt meestal geassocieerd met kankerverwekkendheid, maar er zijn aanwijzingen dat langdurig verhoogde blootstelling aan PAK’s ook nog andere risico’s met zich meebrengt, zoals een lager geboortegewicht bij baby’s, hartproblemen bij wegwerkers en verminderde cognitieve ontwikkeling van kinderen. Het onstaan van deze laatstgenoemde gezondheidseffecten in de IJmond is op basis van de huidige kennis niet aannemelijk, omdat de gemeten concentraties daarvoor te laag zijn. Van kortdurende inademing van PAK’s zijn geen effecten bekend.

Het International Agency for Research on Cancer (IARC), onderdeel van de Wereldgezondheidsorganisatie, heeft benzo(a)pyreen beoordeeld als ‘kankerverwekkend bij mensen’ (groep 1). Dibenz[a,h]anthracen en benz[a]anthracen zijn door IARC als ‘waarschijnlijk kankerverwekkend’ beoordeeld (groep 2A). Over benzo[g,h,i]peryleen is volgens IARC niet genoeg bekend om een goede inschatting te kunnen maken van de kankerverwekkendheid (groep 3). De andere vier gemeten PAK’s zijn door IARC als ‘mogelijk kankerverwekkend voor mensen’ ingedeeld (groep 2B). Een overzicht van de indeling van de gemeten PAK’s in verschillende klassen wordt weergegeven in tabel 7.2.

Tabel 7.2: Kankerverwekkende eigenschappen en IARC classificatie juni 2015.

<table>
<thead>
<tr>
<th>Kanker-verwekkend (IARC)*</th>
<th>IARC groep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo[a]antraceen</td>
<td>waarschijnlijk 2A</td>
</tr>
<tr>
<td>Benzo(a)pyreen</td>
<td>ja 1</td>
</tr>
<tr>
<td>Benzo[b]fluoranteen</td>
<td>mogelijk 2B</td>
</tr>
<tr>
<td>Benzo[g,h,i]peryleen</td>
<td>niet classificeerbaar 3</td>
</tr>
<tr>
<td>Benzo[(j)k]fluoranteen</td>
<td>mogelijk 2B</td>
</tr>
<tr>
<td>Chryseen</td>
<td>mogelijk 2B</td>
</tr>
<tr>
<td>Dibenzo[a,h]antraceen</td>
<td>waarschijnlijk 2A</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyreen</td>
<td>mogelijk 2B</td>
</tr>
</tbody>
</table>

Beroepsmatige blootstelling aan complexe mengsels van PAK’s is sterk gecorreleerd met longkanker. Meerdere epidemiologische studies hebben een toename van longkanker waargenomen in mensen die waren blootgesteld aan cokes-ovenemissies, sigarettenrook en dampen die vrijkomen bij het teren van daken. Al deze mengsels bevatten verschillende PAK’s. De gemiddeld gemeten concentraties benzo(a)pyreen ligt bijna een factor 2 onder de wettelijke richtwaarde en beleidsmatige streefwaarde.

7.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee
Een vergelijking met de stadsachtergrondconcentratie is niet mogelijk voor PAK’s, omdat in het JOAQUIN project geen PAK’s zijn bepaald in PM10.

7.5 Conclusie
Uit meetprogramma IJmond blijkt dat het industriegebied IJmond een belangrijke bron van PAK’s is in Wijk aan Zee. Het PAK mengsel voldoet aan het maximaal toelaatbaar risico (MTR), wat betekent dat als er 10.000 mensen hun hele leven lang in Wijk aan Zee zouden wonen er daarvan minder dan één persoon kanker zou krijgen door dit PAK mengsel.

7 De Amerikaanse Environmental Protection Agency (EPA) gebruikt net als de IARC een classificatiesysteem om het kankerverwekkende potentieel van stoffen te beschrijven. Deze indeling is iets anders en wordt beschreven in bijlage 1.
8 Wateroplosbare zouten

8.1 Inleiding
In fijn stof kunnen wateroplosbare zouten worden bepaald. Het gaat daarbij om secundaire aerosolen (deeltjes die zich vormen door reacties van gassen in de lucht), zeezout en stoffen afkomstig van opwaaiend bodemstof. De concentratie wateroplosbare zouten is alleen bepaald in de metingen die deel uitmaken van het JOAQUIN project, in het meetprogramma IJmond worden deze stoffen niet bepaald. De gemeten wateroplosbare zouten zijn ammonium, chloride, calcium-ion, kalium-ion, magnesium-ion, natrium-ion, nitraat en sulfaat.

Wateroplosbare zouten vormen een belangrijk deel van de totale massa PM10. Enkele zouten hebben een natuurlijke oorsprong. Natrium en chloride en in veel mindere mate kalium, calcium en magnesium zijn vaak onderdeel van zeezouten. Nitraat, sulfaat en ammonium zijn daarnaast secundaire aerosolen, die in de atmosfeer ontstaan uit NO\(_x\) (emissie bij verbranding van fossiele brandstof, een belangrijke bron is het verkeer), SO\(_2\) (emissie bij verbranding van bepaalde brandstoffen, de belangrijkste bronnen zijn industrie en zeescheepvaart) en NH\(_3\) (emissie vanuit mest, de belangrijkste bron is de veehouderij). Een aantal zouten kunnen vrijkomen bij het proces van staal maken, waarbij kalk wordt gebruikt. Dat betekent dat staalindustrie een bron kan zijn van calcium (Ca\(^{2+}\)) en onzuiverheden die kunnen voorkomen in kalk van natuurlijke oorsprong zoals silicium en sulfiet. Uit sulfiet (SO\(_3^{2-}\)) kan na oxidatie sulfaat (SO\(_4^{2-}\)) worden gevormd. Aan het hete metaal worden stoffen toegevoegd die kalium (K\(^+\)) bevatten.
8.2 Concentratie en grenswaarde

In het meetprogramma IJmond worden deze stoffen niet bepaald. In tabel 8.1 is de concentratie van deze stoffen te zien voor Wijk aan Zee en voor het Vondelpark zoals gemeten in het JOAQUIN project.

Tabel 8.1 Concentratie wateroplosbare zouten in Wijk aan Zee en Vondelpark tijdens de JOAQUIN metingen (µg/m³). Vetgedrukte concentraties geven een significant verschil weer.

<table>
<thead>
<tr>
<th></th>
<th>Wijk aan Zee</th>
<th>Vondelpark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitraat</td>
<td>3,4</td>
<td>3,3</td>
</tr>
<tr>
<td>Chloride</td>
<td>2,1</td>
<td>1,0</td>
</tr>
<tr>
<td>Sulfat</td>
<td>2,5</td>
<td>1,9</td>
</tr>
<tr>
<td>Natrium-ion</td>
<td>1,5</td>
<td>0,9</td>
</tr>
<tr>
<td>Ammonium</td>
<td>1,1</td>
<td>1,2</td>
</tr>
<tr>
<td>Kalium-ion</td>
<td>0,16</td>
<td>0,10</td>
</tr>
<tr>
<td>Magnesium-ion</td>
<td>0,23</td>
<td>0,14</td>
</tr>
<tr>
<td>Calcium-ion</td>
<td>0,48</td>
<td>0,24</td>
</tr>
</tbody>
</table>

De PM10 concentratie in Wijk aan Zee is ongeveer 4 µg/m³ hoger dan in het Vondelpark. Vooral de hoeveelheid wateroplosbare zouten lijkt voor een groot deel verantwoordelijk voor dit verschil. Chloride draagt ongeveer 1 µg bij, sulfat en natrium ieder 0,6 µg, calcium 0,24 µg en magnesium ongeveer 0,1 µg. De nabijheid van de zee is verantwoordelijk voor de hogere chloride- en natrium-concentratie in Wijk aan Zee. De verhoogde kalium- en calciumconcentraties zouden deels veroorzaakt kunnen worden door het industriegebied IJmond, maar heel duidelijk is dat niet. De verhoogde magnesiumconcentratie in Wijk aan Zee kan deels verklaard worden door de aanwezigheid van zeezout. Voor deze wateroplosbare zouten zijn geen wettelijke of gezondheidkundige grenswaarden bekend.
8.3 Gezondheidskundige effecten

In het algemeen kan gesteld worden dat het niet aannemelijk is dat wateroplosbare zouten gezondheidseffecten teweegbrengen. Twee stoffen vormen daarop mogelijk een uitzondering, namelijk sulfaat en nitraat. Er zijn epidemiologische studies bekend waarbij negatieve gezondheidseffecten worden gevonden, waarbij het onduidelijk is of dat komt door deze stoffen zelf, of omdat sulfaat en nitraat een marker zijn voor andere stoffen die uit dezelfde bron(nen) afkomstig zijn. Verder is het ook niet uitgesloten dat de negatief geladen sulfaat- of nitraatdeeltjes zouten vormen met positief geladen deeltjes zoals metalen en er op die manier voor zorgen dat een hogere blootstelling aan sulfaat of nitraat ook een hogere blootstelling aan bepaalde metalen met zich meebrengt.
8.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee

Uit paragraaf 8.3 blijkt dat de concentraties chloride, sulfaat, natrium, kalium, magnesium en calcium in Wijk aan Zee significant hoger zijn dan bij achtergrondstation Vondelpark. Daarom wordt in dit hoofdstuk beschreven bij welke windrichting de concentraties van deze stoffen verhoogd zijn.

8.4.1 Chloride

PM$_{10}$ in Wijk aan Zee bevat ongeveer 1 µg/m3 (significant) meer chloride dan PM$_{10}$ in het Vondelpark en is daarmee significant verhoogd. Vooral wanneer de wind uit de richtingen Noordwest, West en Zuidwest komt is de chloride-concentratie verhoogd. De verhoogde concentratie chloride in Wijk aan Zee is vooral afkomstig van de zee. Door opwaaiend en verdampend zeewater komt chloride in de lucht als PM$_{10}$.

![Chlorideconcentratie in Vondelpark en Wijk aan Zee (zwarte balk: 95% betrouwbaarheidsinterval) en richting herkomst chloride in Wijk aan Zee (stippellijn: gemiddelde concentratie).](image)

8.4.2 Sulfaat

De sulfaatconcentratie in Wijk aan Zee is 0,6 µg/m3 hoger (significant) dan de sulfaatconcentratie in het Vondelpark. De sulfaatconcentratie lijkt vooral verhoogd bij wind uit het zuiden of oosten, maar de verschillen per windrichting zijn niet zeer groot. De concentratie sulfaat lijkt niet bepaald te worden door één (lokale) bron.
De natriumconcentratie in PM10 in Wijk aan Zee is 0,6 µg/m³ (significant) hoger dan de natriumconcentratie in het Vondelpark. Uit de natriumconcentratie kan de concentratie zeezout worden berekend, welke met name uit natriumchloride bestaat. Onderstaande windrichtingenanalyse laat zien dat de natriumconcentratie verhoogd is bij wind uit westelijke richtingen, net als voor chloride.

Dat betekent dat voor natrium, net als chloride, de verhoogde concentratie in PM10 in Wijk aan Zee door de zee wordt veroorzaakt.
8.4.4 Kalium-ion
De kaliumconcentratie in Wijk aan Zee is significant hoger dan de kaliumconcentratie in het Vondelpark.

Vooral wanneer de wind uit het zuiden, en in mindere mate uit het zuidwesten of oosten, komt is de concentratie wat verhoogd. Daaruit kan geconcludeerd worden dat het industriegebied IJmond mogelijk een bron is van kalium.

8.4.5 Magnesium
De magnesiumconcentratie in Wijk aan Zee is significant hoger ten opzichte van de concentratie in het Vondelpark.

Vooral wanneer de wind uit het zuiden, en in mindere mate uit het zuidwesten of oosten, komt is de concentratie wat verhoogd. Daaruit kan geconcludeerd worden dat het industriegebied IJmond mogelijk een bron is van magnesium.
Net als voor chloride en natrium is ook magnesium vooral afkomstig uit westelijke richtingen. Daaruit blijkt dat de zee een belangrijke bron is van magnesium.

8.4.6 Calcium
De calciumconcentratie in Wijk aan Zee is significant ruim twee maal hoger dan in het Vondelpark.

De calciumconcentratie in Wijk aan Zee is verhoogd bij wind uit het zuiden en het zuidwesten. Daaruit kan geconcludeerd worden dat het industriegebied IJmond mogelijk een bron is van calcium in PM10 in Wijk aan Zee.

8.5 Conclusie wateroplosbare zouten in PM10
Het verschil tussen de PM10 concentraties in Wijk aan Zee en Vondelpark wordt voor een belangrijk deel bepaald door de hoeveelheid wateroplosbare zouten in het stof, de belangrijkste bron van deze zouten in Wijk aan Zee is de zee. Uit de natriumconcentratie kan de concentratie zeezout, welke met name uit natriumchloride bestaat, worden berekend door te vermenigvuldigen met een factor 3,26 (RIVM methode). De natriumconcentratie is in Wijk aan Zee 0,6 µg/m³ hoger dan in het Vondelpark. De concentratie zeezout is daarmee in Wijk aan Zee ongeveer 2 µg/m³ hoger dan in het Vondelpark. Het is niet waarschijnlijk dat deze zogenoemde zeezoutfractie aanleiding zal geven tot belangrijke gezondheidseffecten.
9 Oxidatief potentieel

9.1 Inleiding
Oxidatief potentieel van PM10 geeft een idee over de mate waarin het PM10 oxiderende eigenschappen heeft. Het wordt in epidemiologisch onderzoek gebruikt als een blootstellingschating aan oxiderende stoffen. Oxiderende stoffen kunnen mogelijk celschade teweegbrengen. Veel metalen (zoals cobalt, ijzer, zink en mogelijk mangaan) kunnen mogelijk zorgen voor een verhoging van het oxidatief potentieel van PM10, wetenschappelijk onderzoek richt zich momenteel hierop.

9.2 Concentratie en grenswaarde
Er zijn geen significante verschillen voor het gemeten oxidatief potentieel tussen Wijk aan Zee en Vondelpark (tabel 9.1).

| Tabel 9.1 Oxidatief potentieel in Wijk aan Zee en Vondelpark tijdens de JOAQUIN metingen. |
|--|----------|
| Wijk aan Zee | Vondelpark |
| Oxidatief potentieel (units/m³) | 1683 | 1777 |

Er bestaat voor oxidatief potentieel geen grenswaarde.

9.3 Gezondheidskundige effecten
Er zijn wetenschappelijke aanwijzingen dat het oxidatief potentieel ofwel radicaal vormend vermogen van fijn stof een goede indicator is voor de schadelijke fractie van fijn stof. Door oxidatie worden reactieve zuurstofverbindingen gevormd in het lichaam, wat mogelijk een rol speelt bij het ontstaan van gezondheidsschade. De theorie is dat als fijn stof met oxiderende bestanddelen erin in contact komt met het neus- en long epitheel, er vrije radicalen kunnen worden geproduceerd. Het vrijkomen daarvan kan weefsel- en celschade veroorzaken, waardoor bijvoorbeeld longziekten kunnen ontstaan. Wetenschappelijk onderzoek naar de bruikbaarheid van oxidatief potentieel als gezondheidsindicator vindt momenteel volop plaats, het lijkt op dit moment te vroeg om gezondheidseffecten te verbinden aan deze maat.

9.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee
Het oxidatief potentieel van PM10 in Wijk aan Zee lijkt iets lager dan dat van het PM10 in het Vondelpark, maar dit verschil is niet significant. Uit figuur 9.1 blijkt wel dat het oxidatief potentieel van PM10 in Wijk aan Zee verhoogd is bij zuiden- en oostenwind, terwijl bij noordelijke en westelijke windrichtingen het oxidatief potentieel nihil is. Dat zou er op kunnen wijzen dat het industriegebied IJmond bijdraagt aan een verhoging van het oxidatief potentieel in Wijk aan Zee.
9.5 Conclusie oxidatief potentieel

De concentratie oxidatief potentieel op het meetstation Wijk aan Zee is vergelijkbaar met die op stadsachtergrondniveau, gemeten op meetstation Vondelpark. Nadere analyse van de bijdragen vanuit verschillende windrichtingen laat zien dat de concentratie in Wijk aan Zee, gezien de ligging aan zee, mogelijk lager had kunnen zijn. Industriegebied IJmond en/of andere bronnen in zuidelijke en oostelijke richting dragen waarschijnlijk bij aan de gemiddelde concentratie in Wijk aan Zee.

Welke gezondheidseffecten kunnen samenhangen met deze concentratie is momenteel niet duidelijk, wetenschappelijk onderzoek hiernaar vindt volop plaats.
10 Markers voor houtrook

10.1 Inleiding
In het JOAQUIN project is ook de concentratie markers voor houtrook bepaald die in het PM10 aanwezig zijn. Daarbij is levoglucosan de belangrijkste. Galactosan en mannosan zijn chemisch gezien vergelijkbare verbindingen, die in dezelfde analyse ook bepaald worden, maar van deze twee stoffen is onduidelijk of ze bruikbaar zijn als marker. Levoglucosan ontstaat bij de verbranding van cellulose en zetmeel uit biomassa, en is dus een marker voor de bijdrage van houtrook. Bronnen hiervan zijn verwarming van woningen door open haarden of houtkachels, verbranden van snoeiafval en natuurbranden. De analyses van zowel levoglucosan als galactosan en mannosan worden weergegeven voor de volledigheid.

10.2 Concentratie en grenswaarde
Er zijn geen significante verschillen voor de concentraties van de houtrookmarkers tussen Wijk aan Zee en Vondelpark (tabel 10.1).

<table>
<thead>
<tr>
<th></th>
<th>Wijk aan Zee</th>
<th>Vondelpark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galactosan (ng/m³)</td>
<td>4,69</td>
<td>4,53</td>
</tr>
<tr>
<td>Mannosan (ng/m³)</td>
<td>10,55</td>
<td>9,92</td>
</tr>
<tr>
<td>Levoglucosan (ng/m³)</td>
<td>38,04</td>
<td>38,13</td>
</tr>
</tbody>
</table>

Voor houtrookmarkers zijn geen grenswaarden bekend.

10.3 Gezondheidskundige effecten
Levoglucosan is een marker voor houtrook. Blootstelling aan houtrook kan luchtwegklachten teweegbrengen en is een veel voorkomende oorzaak van (ernstige) geurhinder. De concentraties van mannosan en galactosan worden in de analyse automatisch vastgesteld. Het is niet waarschijnlijk dat levoglucosan, mannosan of galactosan als stof zelf gezondheidskundig relevant zijn.

10.4 Vergelijking met stadsachtergrond en invloed windrichting in Wijk aan Zee
Figuur 10.1 laat zien hoe de gemeten concentratie van de houtrookmarker levoglucosan in Wijk aan Zee zich verhoudt tot de gemeten concentratie op stadsachtergrondstation Vondelpark. Daarnaast is met behulp van windrichtinganalyse bepaald uit welke richting deze stof met name komt.
De concentratie levoglucosan is vooral verhoogd bij oostelijke wind en in mindere mate bij zuidenwind. De patronen voor mannosan en galactosan zijn identiek (en hier niet weergegeven). De verhoging bij oostenwind blijkt bij nadere beschouwing in sterke mate te zijn veroorzaakt door het samenvallen van de metingen met een periode van oostenwind en de Paasvuren in het Oosten van Nederland (en aangrenzend gebied in Duitsland) en treedt ook op in het Vondelpark.

Dit in ogenschouw nemende, in combinatie met het feit dat de industrie in de IJmond geen hout als brandstof gebruikt, lijkt het uitgesloten dat het industriegebied IJmond een belangrijke bijdrage levert aan de hoeveelheid van deze stoffen in het PM10 in Wijk aan Zee.

10.5 Conclusie markers voor houtrook
Het industriegebied IJmond zorgt niet voor een verhoging van de concentratie houtrookmarkers in PM10.
11 Conclusie

Uit de metingen gedaan in het kader van meetprogramma IJmond en de reguliere metingen in de gemeente Amsterdam blijkt dat in 2013 de jaargemiddelde concentratie PM$_{10}$ (zonder zeezoutcorrectie) in Wijk aan Zee 25,5 µg/m3 was. Dit is ongeveer 20% hoger dan in het Vondelpark, waar de jaargemiddelde concentratie 21,0 µg/m3 was. Uit de windrichtinganalyse blijkt dat het industriegebied IJmond hieraan een belangrijke bijdrage levert. Hoewel aan de wettelijke grenswaarden voor PM$_{10}$ wordt voldaan, wordt de gezondheidskundige grenswaarde overschreden. Overigens is dit in een groot deel van Nederland het geval. Uit de wetenschappelijke kennis die er bestaat over het effect van PM$_{10}$ op sterfte kan afgeleid worden dat een verhoging van 4,5 µg/m3 PM$_{10}$ samenhangt met een verkorting van het leven van ongeveer twee maanden. Overigens zijn in 2013 op meetstations bij drukke wegen in Amsterdam vergelijkbare concentraties PM$_{10}$ gemeten als in Wijk aan Zee. Bij mensen die meer PM$_{10}$ inademen treden vaker longziekten en hart- en vaatziekten op en zij sterven eerder dan mensen die minder PM$_{10}$ inademen. Verlaging van de concentratie PM$_{10}$ zal altijd gezondheidswinst zal opleveren.

In Wijk aan Zee was de concentratie roet 0,16 µg/m3 (bijna 30%) hoger dan op stadsachtergrondlokatie Vondelpark. De windrichtingsanalyse laat zien dat industriegebied IJmond hieraan een belangrijke bijdrage levert. Mensen die in de stad aan een drukke weg wonen leven ten gevolge van roet gemiddeld ongeveer zes maanden korter dan mensen die niet aan een drukke weg wonen. Het is de verwachting dat bij mensen die meer roet inademen vaker hart- en vaatziekten en longziekten voorkomen. In de stad is het meeste roet afkomstig van wegverkeer. Uit de wetenschappelijke kennis die er bestaat over het effect van verkeersgerelateerde roet op sterfte, zou geconcludeerd kunnen worden dat een verhoging van 0,16 µg/m3 roet samenhangt met een verkorting van het leven van ongeveer één maand. Het is onduidelijk of het roet in de IJmond vergelijkbaar is met verkeersgerelateerd roet, omdat het voor een belangrijk deel afkomstig is van een andere bron.

Het verschil tussen de PM$_{10}$ concentraties in Wijk aan Zee en Vondelpark wordt voor de helft bepaald door de hoeveelheid wateroplosbare zouten in het stof, de belangrijkste bron van deze zouten in Wijk aan Zee is de zee. Het is niet waarschijnlijk dat de wateroplosbare zouten uit zee aanleiding zullen geven tot gezondheidseffecten. Voor secundaire omzettingsproducten van gasvormige luchtverontreiniging (zoals sulfaat en nitraat) is dit niet duidelijk.

Naast zeezout, is ijzer verantwoordelijk voor een deel van de verhoogde PM$_{10}$ concentratie in Wijk aan Zee. Bij een vergelijking met het Vondelpark wordt gemiddeld ongeveer 0,5 µg/m3 ijzer meer gevonden in het PM$_{10}$ uit Wijk aan Zee. Omdat de hoeveelheid van de andere elementen veel kleiner is dan die van ijzer, kunnen zij het massaverschil in PM$_{10}$ tussen Vondelpark en Wijk aan Zee niet verklaren. Er is een duidelijke bijdrage van de op het industriegebied IJmond aanwezige staalindustrie aan de ijzerconcentratie in de lucht in Wijk aan Zee.

Alle bestanddelen van PM$_{10}$ die in dit rapport beschreven worden zijn zowel te vinden in het Vondelpark als in Wijk aan Zee. De concentratie van cadmium, ijzer, lood en mangaan is in Wijk aan Zee ongeveer drie keer zo hoog als in het Vondelpark (dat is ongeveer 200% meer). Voor de gezondheid van inwoners van Wijk aan Zee zijn roet en mogelijk ijzer, lood en chroom relevant.

IJzer is een zogenaamd transitiemetaal en er zijn aanwijzingen dat transitiemetalen luchtwegklachten kunnen veroorzaken. De concentratie van transitiemetalen in de lucht zou kunnen bijdragen aan de
schadelijkheid van fijn stof. Er is geen norm voor ijzer waaraan getoetst kan worden. Het reduceren van de hoeveelheid ijzer in de lucht kan mogelijk zorgen voor vermindering van luchtwegklachten.

Hoewel er geen grenswaarden worden overschreden, kunnen er ten gevolge van lood in de lucht gezondheidseffecten optreden. Ook neerslag van lood uit de lucht op bodem kan een belangrijke bron zijn voor kinderen, omdat zij tijdens het spelen bodemdeeltjes via hand-mond contact kunnen binnenkrijgen. Bij kinderen kan lood een negatief effect op het leervermogen hebben en bij volwassenen zijn effecten op hart en vaten beschreven. Iedere reductie van lood in de lucht zal naar alle waarschijnlijkheid, net als bij fijn stof, gezondheidswinst opleveren.

Het is onbekend welk aandeel chroom-6 heeft in de concentratie totaal chroom die gemeten is. Er zijn namelijk ook minder gevaarlijke vormen van chroom in de lucht aanwezig, maar hierop is door de meetmethode geen onderscheid gemaakt. Wanneer alle chroom in de vorm van chroom-6 aanwezig zou zijn, dan wordt het maximaal toelaatbaar risico (MTR) voor chroom-6 met ongeveer een factor 2,5 overschreden. Omdat de verschillende vormen van chroom niet afzonderlijk zijn bepaald, is niet uit te sluiten dat de grenswaarde wordt overschreden, maar kan dit ook niet worden bevestigd. Het verdient aanbeveling om meer inzicht te krijgen in de chroom-6 concentratie, bijvoorbeeld aan de hand van emissiegegevens of nadere analyses van PM10 op de verschillende vormen van chroom in de IJmond.

De concentratie s van de componenten van PM10 liggen onder alle grenswaarden (hoewel dat voor chroom-6 niet duidelijk is). Toch betekent dat niet dat er geen gezondheidsschade optreedt. Over de gezondheidseffecten van PM10 is veel bekend en beschreven en daarom is het belangrijk om niet alleen de effecten van individuele bestanddelen te beoordelen. De combinatie van individuele bestanddelen kan zorgen voor effecten, maar kennis daarover is schaars. Bij transitiemetalen is het denkbaar dat er additionele effecten optreden.

Daar waar voor kankerverwekkende stoffen een grens voor toelaatbaar risico beschikbaar is, liggen de concentraties van de kankerverwekkende stoffen (PAK’s, arseen en nikkel) in PM10 onder het MTR. Dat wil zeggen dat de kans op kanker ten gevolge van inademing van deze individuele componenten kleiner is dan 1 op 10.000 bij levenslange blootstelling. Voor kankerverwekkende stoffen, zowel die méé als zonder MTR, kan desondanks altijd gezondheidswinst worden behaald door reductie van de uitstoot.

In dit rapport is vooral ingegaan op de mogelijke gezondheidsrisico’s ten gevolge van inademing van verschillende componenten. De risico’s ten gevolge van neerslag van metalen en PAK’s op de bodem zijn niet uitvoerig meegenomen in de risicobeoordeling. Het is niet uitgesloten dat deze blootstellingsroute consequenties voor de gezondheid zou kunnen hebben.
12 Literatuur

Environmental Protection Agency (Verenigde Staten) www.epa.gov

GETIS Substance database on hazardous substances (geraadpleegd juni 2015) http://www.dguv.de/ifa/GESTIS/GESTIS-Stoffdatenbank/index-2.jsp

www.infomil.nl

Joaquin - Joint Air Quality Initiative INTERIM REPORT (June 2015), WP1 Methods. www.joaquin.eu

www.rivm.nl/normen

Bijlage 1 Classificaties Kankerverwekkende stoffen

In dit rapport is uitgegaan van de Europese indeling van kankerverwekkende stoffen door het IARC (International Agency for Research on Cancer). Het IARC (onderdeel van de Wereldgezondheidsorganisatie) hanteert het hieronder in de tabel beschreven classificatiesysteem om kankerverwekkende potentieel van stoffen te beschrijven. Een andere wereldwijd gaccepteerde indeling voor kankerverwekkende stoffen is die van het Amerikaanse EPA (Environmental Protection Agency). Voor de volledigheid is ook een beschrijving van deze indeling in deze bijlage opgenomen, omdat deze clasificatie soms is geraadpleegd als de betrokken stof niet was ingedeeld door het IARC.

International Agency for Research on Cancer (IARC)
Het International Agency for Research on Cancer (IARC) is een onderdeel van de Wereld Gezondheidsorganisatie (WHO). Het IARC systeem is het meest gebruikte systeem om kankerverwekkende stoffen in te delen. De volgende groepen zijn de afgelopen 30 jaar gebruikt.

<table>
<thead>
<tr>
<th>Classificatie IARC</th>
<th>Engelse definitie</th>
<th>Nederlanse vertaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 1</td>
<td>Carcinogenic to humans</td>
<td>Kankerverwekkend voor mensen</td>
</tr>
<tr>
<td>Groep 2A</td>
<td>Probably carcinogenic to humans</td>
<td>Waarschijnlijk kankerverwekkend voor mensen</td>
</tr>
<tr>
<td>Groep 2B</td>
<td>Possibly carcinogenic to humans</td>
<td>Mogelijk kankerverwekkend voor mensen</td>
</tr>
<tr>
<td>Groep 3</td>
<td>Unclassifiable as to carcinogenicity in humans</td>
<td>Niet classificeerbaar als kankerverwekkend voor mensen</td>
</tr>
<tr>
<td>Groep 4</td>
<td>Probably not carcinogenic to humans</td>
<td>Waarschijnlijk niet kankerverwekkend voor mensen</td>
</tr>
</tbody>
</table>

Environmental Protection Agency (EPA)
De Amerikaanse Environmental Protection Agency (EPA) heeft het Integrated Risk Information System (IRIS), een electronische database die informatie over gezondheidseffecten bevat over stoffen in het milieu. De EPA gebruikt net als de IARC een classificatiesysteem om kankerverwekkende potentieel van stoffen te beschrijven. De EPA heeft in de loop van de jaren vier verschillende classificatiesystemen gebruikt, waarbij alleen de eerste en laatste hier zijn weergegeven.

EPA Classificatie gehanteerd tussen 1986 en 1996

- **Group A**: Human carcinogen
- **Group B1**: Probable human carcinogen - based on limited evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in animals
- **Group B2**: Probable human carcinogen - based on sufficient evidence of carcinogenicity in animals
- **Group C**: Possible human carcinogen
- **Group D**: Not classifiable as to human carcinogenicity
- **Group E**: Evidence of non-carcinogenicity for humans

EPA Classificatie gehanteerd vanaf 2005

- **Group A**: Carcinogenic to humans
- **Group B**: Likely to be carcinogenic to humans
Group C: Suggestive evidence of carcinogenic potential
Group D: Inadequate information to assess carcinogenic potential
Group E: Not likely to be carcinogenic to humans